
Numerics II

Yoann Le Hénaff, Yanyan Shi

Summer semester, 2025

https://na.uni-tuebingen.de/~lehenaff/
https://na.uni-tuebingen.de/~shi/

2

Forefront

This document is a translation of the notes taken by Markus Klein in 2009-2010, of the lecture
given in German by Prof. Dr. Christian Lubich.

Any mistake is most likely due to YS or YLH.

3

https://na.uni-tuebingen.de/~lubich/

4

Contents

1 Fast Fourier Transform 7
1.1 Fourier Series . 7
1.2 Discrete Fourier Transform . 12
1.3 Fast Fourier Transform (FFT) . 15
1.4 Approximation of Fourier coefficients, trigonometric interpolation 16
1.5 Inverse Convolution Problem, Regularization, Filtering 19
1.6 Numerical Deconvolution, Smoothing of Measured Data 23

2 Eigenvalue Problems 27
2.1 Fundamentals . 27
2.2 Conditioning of the Eigenvalue Problem . 33
2.3 Power Method . 37
2.4 Simultaneous Iteration and QR Algorithm . 40
2.5 Transformation to Hessenberg Form . 43
2.6 QR Algorithm with Shift . 46
2.7 Computation of Complex Eigenvalues . 48
2.8 Computation of Singular Values . 51

3 Conjugate Gradient Methods 57
3.1 One-Dimensional Minimization . 57
3.2 Steepest Descent Method . 58
3.3 Ritz-Galerkin Method . 59
3.4 The Conjugate Gradient Method . 61
3.5 Error Analysis of the CG Method . 64
3.6 Preconditioned CG Method . 67
3.7 Conjugate Gradient Method for Minimizing Non-Quadratic Functions 69

4 Iterative Methods for Large Linear Systems 73
4.1 Arnoldi Method . 73
4.2 FOM and GMRES: Galerkin and Minimization of the Residuum 75
4.3 Lanczos Algorithm . 77
4.4 BiCG and QMR . 79

5 Linear Optimization 83
5.1 Examples (from Economics) . 83
5.2 Linear Programs (Optimization problems) . 86
5.3 Simplex Method . 88
5.4 Duality . 92
5.5 Karmarkar’s algorithm . 99
5.6 Convergence of Karmarkar’s algorithm . 101

5

6 CONTENTS

Chapter 1

Fast Fourier Transform

1.1 Fourier Series

Definition 1.1 – Fourier Transform

Let (cn)n∈Z be an absolutely summable sequence of complex numbers, i.e.,
∑

n∈Z |cn| <∞. The
Fourier transform of (cn)n∈Z is given by:

ĉ(t) =

∞∑
n=−∞

cne
int, t ∈ R.

Proposition 1.1 – Properties of the Fourier Transform

The Fourier transform ĉ(t) satisfies:

1. ĉ is 2π-periodic.

2. ĉ is continuous.

3. It satisfies the orthogonality relation:

1

2π

∫ 2π

0

e−inteimtdt =

{
1, m = n,

0, m ̸= n.

4. The inverse formula holds:

cn =
1

2π

∫ 2π

0

e−intĉ(t)dt.

5. The Parseval equation holds:

∞∑
n=−∞

|cn|2 =
1

2π

∫ 2π

0

|ĉ(t)|2dt.

6. Let (cn), (dn) be absolutely summable sequences. Then, for the convolution, we have:

(c ∗ d)n :=

∞∑
j=−∞

cn−jdj

defined as the convolution, and the convolution theorem holds:

ĉ ∗ d(t) = ĉ(t) · d̂(t)

7

8 CHAPTER 1. FAST FOURIER TRANSFORM

Proof. 2.
∑N

n=−N cne
int → ĉ(t) is uniformly convergent for N → ∞ because∣∣∣∣∣ĉ(t)−

N∑
n=−N

cne
int

∣∣∣∣∣ ≤ ∑
|n|>N

|cn| → 0

and this convergence is independent of t, implying that ĉ is continuous.

Definition 1.2 – Fourier Coefficients

Let f be a 2π-periodic continuous function. Then for n ∈ Z,

cn =
1

2π

∫ 2π

0

f(t)e−int dt

is the n-th Fourier coefficient of f , and we denote cn = f̂(n).

Theorem 1.1 – Calculation of Fourier Coefficients and Estimation

Let f be 2π-periodic and p-times differentiable, with f (p) absolutely integrable (it suffices that
f ∈W p,1). Then the following hold:

1. The n-th Fourier coefficient of f (p) is (in)p · cn.

2. cn = O(|n|−p), i.e., |cn| ≤M · |n|−p with

M =
1

2π

∫ 2π

0

|f (p)(t)| dt

Proof. 1. We obtain by (multiple) integration by parts:

1

2π

∫ 2π

0

f (p)(t)e−int dt = − 1

2π

∫ 2π

0

f (p−1)(t)(−in)e−int dt = (in)p
1

2π

∫ 2π

0

f(t)e−int dt

where the boundary terms vanish due to periodicity.

2. From the above, we have:

|cn| · |n|p =

∣∣∣∣ 12π
∫ 2π

0

f (p)(t)e−int dt

∣∣∣∣ ≤ 1

2π

∫ 2π

0

|f (p)(t)| dt

Remark 1.1

In particular, (cn) is absolutely summable if f ∈ C2 (or f ∈ W 2,1). With greater effort, it can
also be shown that f ∈ C1 would suffice.

Theorem 1.2 – Convolution Theorem

Let f, g be continuous and 2π-periodic. Then the convolution of f and g, defined by

(f ∗ g)(t) = 1

2π

∫ 2π

0

f(t− τ)g(τ) dτ

is again 2π-periodic and continuous. For the Fourier coefficients of the convolution, we have:

f̂ ∗ g(n) = f̂(n) · ĝ(n), n ∈ Z

1.1. FOURIER SERIES 9

Proof. The periodicity and continuity are clear from Analysis II. Now we calculate:

f̂ ∗ g(n) = 1

2π

∫ 2π

0

(
1

2π

∫ 2π

0

f(t− τ)g(τ) dτ

)
e−int dt

=

(
1

2π

)2 ∫ 2π

0

∫ 2π

0

f(t− τ)e−in(t−τ) · g(τ)e−inτ dtdτ

Set s := t− τ , then we obtain:

=
1

2π

∫ 2π

0

f(s)e−insds · 1

2π

∫ 2π

0

g(τ)e−inτdτ

=f̂(n) · ĝ(n)

Thus, the claim follows.

Remark 1.2 – Generalization

The Fourier transform is also defined for n ∈ R, and the convolution theorem holds for this case
as well.

Remark 1.3 – Outlook

Can a continuous function f be recovered from its Fourier coefficients? That is, does

f(t)
?
=

∞∑
n=−∞

cne
int

We will see that without additional conditions on f , the sequence (cn) is not absolutely
summable. Even if (cn) is absolutely summable, does f(t) = ĉ(t)? We will later see that
this is indeed the case.

Theorem 1.3 – Fejér’s Theorem (Fejér, 1904)

Let f : R → C be continuous and 2π-periodic with Fourier coefficients

(cn)n∈Z =
1

2π

∫ 2π

0

e−intf(t) dt

Then the following holds:

n∑
k=−n

(
1− |k|

n+ 1

)
cke

ikt → f(t) uniformly in t

Proof. 1. We consider the convolution with the convolution theorem:

(einτ ∗ f)(t) = 1

2π

∫ 2π

0

ein(t−τ)f(τ) dτ = eintcn

Thus, by linearity:
n∑

j=−n

(
1− |j|

n+ 1

)
eijtcj := (Kn ∗ f)(t)

with the so-called Fejér kernel Kn, for which we have:

Kn(t) =

n∑
j=−n

(
1− |j|

n+ 1

)
eijt

10 CHAPTER 1. FAST FOURIER TRANSFORM

2. We show that the reduction formula holds:

Kn(t) =
1

n+ 1

(
sin
(
n+1
2 t
)

sin
(
t
2

))2

This is shown using the definition of the sine function, where we use the identity:

sin2
(
t

2

)
=

1

2
(1− cos t) = −1

4
e−it +

1

2
− 1

4
eit

Direct computation then gives the identity:(
−1

4
eit +

1

2
− 1

4
eit
) n∑

j=−n

(
1− |j|

n+ 1

)
eijt =

1

n+ 1

(
−1

4
e−i(n+t)t +

1

2
− 1

4
ei(n+1)t

)
This simplifies to:

=
1

n+ 1
sin2

(
(n+ 1)t

2

)
3. We now consider some properties:

(a) Due to the orthogonality relation:

1

2π

∫ 2π

0

Kn(t) dt =

n∑
j=−n

(
1− |j|

n+ 1

)
1

2π

∫ 2π

0

eijt︸ ︷︷ ︸
=δj0

dt = 1

(b) Kn(t) ≥ 0 ∀t, n due to the reduction formula.

(c) ∀δ ∈ (0, π), we have:

lim
n→∞

∫ 2π−δ

δ

Kn(t) dt = 0

because

Kn(t) ≤
1

n+ 1

1

sin2
(
δ
2

) → 0 as n→ ∞

4. It follows that:

(Kn ∗ f)(t)− f(t) =
1

2π

∫ 2π

0

Kn(τ) (f(t− τ)− f(t)) dτ

and thus: ∫ 2π

0

Kn(τ) (f(t− τ)− f(t)) dτ = I1 + I2

where

I1 =

∫ δ

−δ

(f(t− τ)− f(t))Kn(τ)dτ and I2 =

∫ 2π−δ

δ

(f(t− τ)− f(t))Kn(τ)dτ

We estimate:

I1 ≤ max
|τ |≤δ

|f(t− τ)− f(t)| · 1

2π

∫ δ

−δ

Kn(τ)dτ ≤ 1

2π

∫ π

−π

Kn(τ)dτ = 1

We estimate the second part:

I2 ≤ 1

2
· 2 max

0≤θ≤2π
|f(θ)| ·

∫ 2π−δ

δ

|Kn(τ)|dτ︸ ︷︷ ︸
→0

1.1. FOURIER SERIES 11

Thus, for n→ ∞, we have:

lim sup
n→∞

|(Kn ∗ f)(t)− f(t)| ≤ max
|τ |≤δ

|f(t− τ)− f(t)| for ∀δ ∈ (0, π)

As δ → 0, the term tends to 0 due to continuity. Since f is uniformly continuous, the
convergence is uniform. Thus, Kn ∗ f(t) → f(t) uniformly in t.

Remark 1.4

It should be noted that

n∑
k=−n

(
1− |k|

n+ 1

)
cke

int =
1

n+ 1

n∑
m=0

(
m∑

k=−m

cke
ikt

)

is the arithmetic mean of all partial sums, where the partial sums need not necessarily converge.

Theorem 1.4 – Uniqueness Theorem

Let f and g be 2π-periodic and continuous functions with the same Fourier coefficients. Then
f = g.

Proof. We have

f(t) = lim
n→∞

n∑
j=−n

(
1− |j|

n+ 1

)
cje

ijt = g(t) ∀t.

Theorem 1.5 – Representation via Fourier Coefficients

Let f be a 2π-periodic and continuous function. If the Fourier coefficients are absolutely
summable, then:

f(t) =

∞∑
n=−∞

cne
int ∀t.

Proof. The function f and the series have the same Fourier coefficients, and by the uniqueness
theorem, both functions must coincide.

Remark 1.5

This is particularly true if f is once continuously differentiable (i.e., f ∈W 1,1).

Theorem 1.6 – Interpretation of Fejér’s Theorem

Every continuous 2π-periodic function can be uniformly approximated by trigonometric polyno-
mials.

Proof. This follows directly from the statement of Fejér’s theorem.

Theorem 1.7 – Weierstrass Approximation Theorem

Every continuous function on a compact interval g : [a, b] → R can be uniformly approximated
by polynomials, i.e., ∀ϵ > 0, there exists a polynomial p such that

max
x∈[a,b]

|p(x)− g(x)| < ϵ.

12 CHAPTER 1. FAST FOURIER TRANSFORM

Proof. Without loss of generality, assume that [a, b] = [−1, 1]. Set f(t) = g(x) for x = cos t, or
more precisely t = arccosx ∈ [0, π]. Next, extend f as an even function, i.e., f(−t) = f(t), and
note that f is continuous.

For even functions, we have c−n = cn, because:

c−n =
1

2π

∫ 2π

0

eintf(t) dt =
1

2π

∫ 0

−2π

e−inτf(−τ) dτ =
1

2π

∫ 2π

0

e−inτ f(−τ)︸ ︷︷ ︸
f(τ)

dτ = cn

due to the transformation of variables and the 2π-periodicity.

Furthermore, by Fejér’s theorem, we know:

n∑
j=−n

(
1− |j|

n+ 1

)
cje

ijt = c0 + 2

n∑
k=1

(
1− k

n+ 1

)
ck cos(kt).

We also know that the left-hand side converges uniformly to f(t). Since cos(k arccosx) = Tk(x),
the k-th Chebyshev polynomial, we obtain:

c0 + 2

n∑
k=1

(
1− k

n+ 1

)
ckTk(x) → g(x).

Remark 1.6

The convergence in the last theorem can be arbitrarily slow. It will be faster if the coefficients
decay rapidly, which is particularly the case when the function is frequently differentiable.

1.2 Discrete Fourier Transform

We consider finite sequences x = (x0, . . . , xN−1) ∈ CN periodically extended to arbitrary integer
indices (if needed). That is, we set xk = xℓ if k ≡ ℓ mod N .

Definition 1.3 – Discrete Fourier Transform

The mapping FN : CN → CN is defined by FNx = x̂ with

x̂k =

N−1∑
j=0

wk·j
N xj ,

where wN = ei
2π
N is the primitive N -th complex root of unity, i.e., wN

N = 1.

Remark 1.7

If N is clear from context, we simply write w for the root of unity.

Remark 1.8 – Computational Complexity

The direct computation of the discrete Fourier transform requires about N2 operations (mul-
tiplications and additions). We will later see that the Fast Fourier Transform (FFT) requires
about N log2N operations if N = 2L.

1.2. DISCRETE FOURIER TRANSFORM 13

Lemma 1.1 – Orthogonality Relation of the Discrete Fourier Transform

It holds that:
N−1∑
k=0

wkℓ
N w̄

km
N =

{
N, ℓ ≡ m mod N

0, otherwise

Proof. Let w̄ = w−1. For ℓ ≡ m,
N−1∑
k=0

1 = N.

Otherwise, it follows that

N−1∑
k=0

wkℓ
N w

−km
N =

N−1∑
k=0

w
k(ℓ−m)
N =

1− (wℓ−m
N)N

1− wℓ−m
N

= 0.

Theorem 1.8 – Parseval’s Equation

Let CN be equipped with the Euclidean norm. Then we have:

1√
N

∥FNx∥ = ∥x∥, ∀x ∈ CN ,

i.e., this transformation is an isometry/unitary mapping. Explicitly, this means:

1

N

N−1∑
k=0

|x̂k|2 =

N−1∑
j=0

|xj |2.

Proof. We compute:

∥x̂∥2 =

N−1∑
k=0

x̂k ¯̂xk

=

N−1∑
k=0

N−1∑
ℓ=0

wkℓ
N xℓ

N−1∑
m=0

w̄km
N x̄m

=
∑
ℓ

∑
m

xℓx̄m
∑
k

wkℓ
N w̄

km
N︸ ︷︷ ︸

=Nδlm

=N

N−1∑
ℓ=0

xℓx̄ℓ = N∥x∥2,

which proves the equality.

Notation 1.1 – Fourier Transform Matrix

The mapping FN : CN → CN is linear and represented by the matrix (wkj
N)N−1

k,j=0. Similarly, we
define:

F̄N : CN → CN , with matrix (w̄kj
N)N−1

k,j=0 = (w−kj
N).

Theorem 1.9 – Inverse Discrete Fourier Transform

We have:

F−1
N =

1

N
F̄N ,

14 CHAPTER 1. FAST FOURIER TRANSFORM

or explicitly,

xj =
1

N

N−1∑
k=0

w̄kj
N x̂k, for j = 0, . . . , N − 1.

Proof. From the orthogonality lemma, we know that FN · F̄N = NIN . Explicitly,

N−1∑
k=0

w̄kj
N

N−1∑
ℓ=0

wkℓ
N xℓ =

N−1∑
ℓ=0

xℓ

N−1∑
k=0

w̄kj
N w

kℓ
N = Nxj .

Thus, dividing by N gives the result.

Definition 1.4 – Pointwise Product

For sequences x, y ∈ CN , the pointwise multiplication is defined as:

(x · y)k = xkyk.

Definition 1.5 – Convolution Multiplication

For N -periodic sequences x, y ∈ CN , we define the convolution product x ∗ y ∈ CN as:

(x ∗ y)k =

N−1∑
j=0

xk−jyj .

Theorem 1.10 – Convolution Theorem

The Fourier transform converts convolution into pointwise multiplication:

FN (x ∗ y) = (FNx) · (FNy).

Proof. We consider the m-th component of the left-hand side:

(FN (x ∗ y))m =
N−1∑
k=0

wmk
N

N−1∑
j=0

xk−jyj .

Using index shift k − j = ℓ:

N−1∑
j=0

N−1∑
ℓ=0

w
m(ℓ+j)
N xℓyj .

Since sequences are N -periodic,

N−1∑
j=0

wmj
N yj

N−1∑
ℓ=0

wmℓ
N xℓ = ŷmx̂m = (FNy) · (FNx),

proving the claim.

Corollary 1.1 – Properties of Convolution

Since pointwise multiplication is commutative and associative, convolution is also commutative
and associative.

1.3. FAST FOURIER TRANSFORM (FFT) 15

Corollary 1.2 – Direct Computation of Convolution

We have:

x ∗ y =
1

N
F̄N (FNx · FNy),

which provides an efficient way to compute convolution using the Fourier transform.

Remark 1.9 – Computational Effort for Convolution

A direct computation of the convolution requires approximately N2 multiplications and addi-
tions. With the FFT, we need N log2N operations for the transformation, only N operations
for the pointwise multiplication, and another N log2N operations for the inverse FFT. Thus,
using the FFT, we require only 3N log2N + 2N operations.

1.3 Fast Fourier Transform (FFT)

Given a vector x = (x0, . . . , xN−1) ∈ CN , we aim to compute x̂ = FNx.

Theorem 1.11 – Reduction Formula

We split the vector x into two vectors u and v, where u contains the even indices and v the odd
indices:

x = (u0, v0, u1, v1, . . . , uN/2−1, vN/2−1) ∈ CN .

Then, for k = 0, . . . , N/2− 1, we have:

(FNx)k = (FN/2u)k + wk
N (FN/2v)k,

(FNx)k+N/2 = (FN/2u)k − wk
N (FN/2v)k.

Proof. We compute the k-th entry of FNx:

(FNx)k =

N−1∑
ℓ=0

wkℓ
N xℓ =

N/2−1∑
j=0

w
k(2j)
N uj +

N/2−1∑
j=0

w
k(2j+1)
N vj .

Since w2j
N = wj

N/2, this simplifies to:

(FNx)k =

N/2−1∑
j=0

wkj
N/2uj + wk

N

N/2−1∑
j=0

wkj
N/2vj = (FN/2u)k + wk

N (FN/2v)k.

Due to periodicity, we obtain the second equation using w
k+N/2
N = wk

Nw
N/2
N = −wk

N .

Remark 1.10

If FN/2u and FN/2v are known, we require N/2 multiplications and N additions to compute
FNx.

Remark 1.11 – Historical Note

This formula dates back to Cooley-Tukey (1965). Similar ideas were found by Danilson and
Lanzos (1942), Runge (1925), Gauss, and even Caesar’s ”divide et impera.”

Remark 1.12 – Algorithm Complexity

If N = 2L, we can recursively divide the vector L times until we obtain vectors of length 1. This
results in a computational cost of L ·N/2 multiplications, where L = log2N .

16 CHAPTER 1. FAST FOURIER TRANSFORM

Theorem 1.12 – Computational Complexity of FFT

For N = 2L, computing FNx requires:

1. 1
2N log2N complex multiplications,

2. N log2N complex additions.

Remark 1.13 – Order of Elements

During the execution of the FFT algorithm, the order of elements is permuted. Using binary
representation, we obtain the order by reversing the binary digits:

Input (Decimal) Input (Binary) Output (Binary) Output (Decimal)
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

Thus, the order is obtained by mirroring the binary digits.

Remark 1.14 – Comparison with Direct Computation

We summarize key values that highlight the advantage of FFT:

N N2 N log2N Quotient
25 = 32 103 160 6.4
210 ≈ 103 106 104 100
220 ≈ 106 1012 2 · 107 50, 000

1.4 Approximation of Fourier coefficients, trigonometric in-
terpolation

We would like to clarify the relationship between the discrete and continuous Fourier transforms.
The Fourier coefficients for a 2π-periodic, continuous function f are given by:

f̂(n) = cn =
1

2π

∫ 2π

0

e−intf(t) dt.

We approximate the integral using the trapezoidal rule with step size h = 2π
N , obtaining:

f̂N (n) =
1

2π

(
h

2
e−in0f(0) + he−inhf(h) + · · ·+ he−in(N−1)hf((N − 1)h) +

h

2
e−inNhf(Nh)

)
.

Due to the periodicity, we have he−in0f(0) = he−inNhf(Nh), so the trapezoidal rule effectively
becomes the rectangular rule. Thus, we obtain:

f̂N (n) =
1

N

N−1∑
j=0

e−inj 2π
N f(tj) =

1

N

N−1∑
j=0

w−nj
N f(tj),

where tj = jh = j 2πN . Therefore, f̂N (n) is N -periodic as a vector. This leads to the following
representation:

f̂N = F−1
N (f(tj))

N−1
j=0 ,

which can be computed using the Fast Fourier Transform (FFT).

1.4. APPROXIMATIONOF FOURIER COEFFICIENTS, TRIGONOMETRIC INTERPOLATION17

Theorem 1.13 – Aliasing Formula

Let (f̂(n))n∈Z be absolutely summable. Then,

f̂N (n)− f̂(n) =
∑

0̸=ℓ∈Z
f̂(n+ ℓN).

Proof. From the previous chapter, we know that if the Fourier coefficients are absolutely summable,
we have:

f(t) =

∞∑
k=−∞

f̂(k)eikt.

Now, consider:

f̂N (n) =
1

N

N−1∑
j=0

w−nj
N

∞∑
k=−∞

f̂(k)eikj
2π
N =

∞∑
k=−∞

f̂(k)
1

N

N−1∑
j=0

w−nj
N wkj

N ,

where wN = ei
2π
N . The inner sum can be simplified as follows:

1

N

N−1∑
j=0

w−njwkj =

{
1 if k = n mod N,

0 otherwise.

Thus, we obtain:

f̂N (n) =

∞∑
ℓ=−∞

f̂(n+ ℓN),

and for ℓ = 0, this reduces to f̂(n), which confirms the statement.

Corollary 1.3 – Error Estimation for the Numerical Fourier Coefficients

Let f be p-times continuously differentiable (with p ≥ 2) and 2π-periodic. Then, for |n| ≤ N
2 ,

we have:
|f̂N (n)− f̂(n)| ≤ C ·N−p.

Proof. From the previous section, we know that:

|f̂(n)| ≤ C0|n|−p,

with

C0 =
1

2π

∫ 2π

0

|f (p)(t)| dt.

On the other hand, using the aliasing formula, we have:

|f̂N (n)− f̂(n)| =
∑
ℓ̸=0

|f̂(n+ ℓN)| ≤
∑
ℓ ̸=0

C0 · |n+ ℓN |−p.

For |n| ≤ N
2 , we have |n+ ℓN | ≥ N

2 . So |n+ ℓN | < N for only one ℓ ̸= 0. This is

l =

{
−1 n > 0,

1 n < 0.

For every interval I = [N, 2N), [2N, 3N), · · · and (−2N,−N], (−3N,−2N], · · · there is exactly one
ℓ such that n+ ℓN ∈ I. This gives us the following in total:∑

ℓ ̸=0

|n+ ℓN |−p ≤ (N/2)−p + 2

∞∑
m=1

(mN)−p ≤ cp ·N−p,

where cp is a constant derived from the converging sums. Hence, C = C0cp and the result follows.

18 CHAPTER 1. FAST FOURIER TRANSFORM

Remark 1.15

For the special case n = 0, we obtain for the grid spacing h = 2π
N :

h

2π

N−1∑
j=0

f(tj)−
1

2π

∫ 2π

0

f(t) dt = O(hp).

Thus, the accuracy of the trapezoidal rule depends on the smoothness of the function, i.e., the
trapezoidal rule is very accurate for smooth and periodic integrands.

Theorem 1.14 – Trigonometric Interpolation

The trigonometric polynomial

fN (t) =

N
2∑

n=−N
2

′f̂N (n)eint

interpolates f at the points tj = j 2πN for j = 0, 1, . . . , N − 1.

Proof. Due to the periodicity, we have (in particular eintj = wnj
N):

fN (tj) =

N−1∑
n=0

f̂N (n)wnj
N .

We have used that the left and right boundary terms are equal, so the
∑

′ term vanishes. This
formula means that

fN (tj))
N−1
j=0 = FN

(
f̂N (n)

)N−1

n=0
= FNF−1

N (f(tj))
N−1
j=0 = (f(tj))

N−1
j=0 .

Thus, fN (t) already interpolates the grid points tj .

Notation
∑

′ means that the first and the last term are each taken with the factor 1
2 , i.e., for our

sum we obtain:

N
2∑

n=−N
2

′f̂N (n) :=
1

2
f̂N

(
−N

2

)
+ f̂N

(
−N

2
+ 1

)
+ · · ·+ f̂N

(
N

2
− 1

)
+

1

2
f̂N

(
N

2

)
This is the interpolation at the nodes tj = j 2πN .
It would also be permissible to form one of the following sums instead:

N
2∑

n=−N
2 +1

,

N
2 −1∑

n=−N
2

,

N
2 −1+k∑

n=−N
2 +k

Using this method, we could also prove the theorem. However, we will see that our variant is
the least oscillatory due to symmetry reasons.

Algorithm 1.1 – Trigonometric Interpolation

We assume that f is 2π-periodic. Then we proceed as follows:

1. Compute f(tj) for j = 0, . . . , N − 1 and tj = j · 2π
N .

2. Compute f̂N = F−1
N (f(tj))

N−1
j=0 using the FFT with a computational complexity of

O(N logN) operations.

3. Obtain the trigonometric interpolation polynomial as in the previous theorem.

1.5. INVERSE CONVOLUTION PROBLEM, REGULARIZATION, FILTERING 19

Theorem 1.15 – Error Estimate for Trigonometric Interpolation

If (f̂(n))n is absolutely summable, then:

|fN (t)− f(t)| ≤ 2
∑

|n|≥N
2

′|f̂(n)|

Proof. We use the aliasing formula and obtain:

|fN (t)− f(t)| =

∣∣∣∣∣∣
N
2∑

n=−N
2

′f̂N (n)eint −
∞∑

n=−∞
f̂(n)eint

∣∣∣∣∣∣
=

∣∣∣∣∣∣
N
2∑

n=−N
2

′(f̂N (n)− f̂(n))eint −
∑

|n|≥N
2

′f̂(n)eint
∣∣∣∣∣∣

Using the aliasing formula:

=

∣∣∣∣∣∣
N
2∑

n=−N
2

′
∑
ℓ ̸=0

f̂(n+ ℓN)eint −
∑

|n|≥N
2

′f̂(n)eint
∣∣∣∣∣∣

≤
∑

|m|≥N
2

′|f̂(m)|+
∑

|n|≥N
2

′|f̂(n)|

≤ 2
∑

|n|≥N
2

′|f̂(n)|

which proves the theorem.

Remark 1.16

If f ∈ Cp with p ≥ 2, then it is well known that f̂(n) = O(|n|−p). Thus, we obtain: |fN (t) −
f(t)| = O(N−p+1).

1.5 Inverse Convolution Problem, Regularization, Filtering

Motivation (Problem Statement)
An input signal u = u(x) for x ∈ R enters a device, and a signal b is measured, which no longer
corresponds to the input signal.

We make the following assumptions:

1. u 7→ b is linear.

2. u 7→ b is shift-invariant.

We know that such mappings are convolutions.

Remark 1.17

This problem arises in many areas, such as image or signal processing.

Model Construction (Device Model)
We consider the following model:∫ ∞

−∞
a(x− y)u(y) dy + ε(x) = b(x)

where u(y) is the unknown input signal, b(x) is the observed signal, and the term a(x − y) rep-
resents the device function. The term ε(x) represents the noise or errors in the model, including

20 CHAPTER 1. FAST FOURIER TRANSFORM

measurement errors, rounding errors, and model errors. This noise is typically unknown, but we
may know an upper bound for it, so that |ε(x)| ≤ M pointwise or in the quadratic mean, i.e.∫∞
−∞ |ε(x)|2 dx ≤M or similar. We aim to reconstruct the input signal u from the observed signal.

Remark 1.18 – Reduction of the problem

In general, a, u, and b have compact support, so that supp(a) = {x : a(x) ̸= 0}. After a variable
transformation, we can assume without loss of generality that:

supp(a) ⊆
[
−π
2
,
π

2

]
, supp(u) ⊆

[
−π
2
,
π

2

]
.

This implies:
supp(b− ε) ⊆ [−π, π]

since if b(x) ̸= ε(x), then ∃y such that a(x−y) ·u(y) ̸= 0, and thus x−y ∈
[
−π

2 ,
π
2

]
, and therefore

x ∈ [−π, π].

We now extend a, u, ε, and b to be 2π-periodic on R. This reduces the problem to:

1

2π

∫ π

−π

a(x− y)u(y) dy + ε(x) = b(x) for x ∈ [−π, π],

which we can express briefly as:
a ∗ u+ ε = b

or for the linear operator Au = a ∗ u, we have:

Au+ ε = b

Remark 1.19

The ”usual” solution method is to solve the linear system Au + ε = b in Rn by neglecting the
disturbance ε and solving Av = b using standard methods. Then the error v − u = A−1ε holds,
provided ∥A−1ε∥ ≤ ∥v∥, which is not necessarily true if the matrix is ill-conditioned.
Unfortunately, this is the case here.

Reminder (Convolution Theorem) It is known that: â ∗ u(n) = â(n)û(n)

Remark 1.20

For the Fourier coefficients, we have:

â(n)û(n) + ε̂(n) = b̂(n) for n ∈ Z

Thus,

û(n) =
b̂(n)

â(n)
− ε̂(n)

â(n)
= v̂(n)− ε̂(n)

â(n)

where v̂(n) solves â(n)û(n) = b̂(n).
However, since the Fourier coefficients of ε remain approximately constant, while the Fourier
coefficients of a decay rapidly (if a is smooth), the expression at the back will dominate the
term, leading to the result that

u(x) =

∞∑
n=−∞

û(n)einx =

∞∑
n=−∞

v̂(n)einx −
∞∑

n=−∞

ε̂(n)

â(n)
einx

For large n, we observe catastrophic error amplification, meaning the problem is ill-conditioned.
This is also referred to as a poorly posed problem, or an ill-posed problem.

1.5. INVERSE CONVOLUTION PROBLEM, REGULARIZATION, FILTERING 21

Remark 1.21 – Alternative Approach (Minimization Problem)

We do not want to solve Au = b, but rather we want to minimize ∥Au−b∥ ≤ ∥ε∥, i.e., if ∥ε∥ ≈ δ,
we require that ∥Au− b∥ ≤ ∥δ∥.
In general, there are infinitely many such u that satisfy this. We wish to choose u such that
∥u′′∥ is minimal (e.g., using cubic splines). Alternatively, we might minimize ∥u∥. Thus, we are
looking for the smoothest or smallest possible u, which leads to a minimization problem.

Remark 1.22

We assume that, unless stated otherwise, we consider the L2-norm, i.e.

∥f∥ = ∥f∥L2 :=

(
1

2π

∫ π

−π

|f(x)|2 dx
)1/2

.

Theorem 1.16 – General Form of the Minimization Problem

We want to minimize ∥Lu∥ and assume that L is linear, e.g., Lu = u′′. Additionally, we require
the constraint ∥Au− b∥ ≤ δ.
The minimum is achieved for ∥Au− b∥ = δ.

Proof. Assume this is not the case, i.e., ∥Lu∥ is minimal for some u with ∥Au− b∥ < δ. Consider
ũ = (1− ρ)u for some ρ > 0. Since L is linear, we have:

∥Lũ∥ = (1− ρ)∥Lu∥ < ∥Lu∥

and for ũ, we get:

∥Aũ− b∥ = ∥(1− ρ)(Au− b)− ρb∥ ≤ (1− ρ)∥Au− b∥+ ρ∥b∥ ≤ δ

This leads to a contradiction for sufficiently small ρ, so the minimum must occur for ∥Au − b∥ =
δ.

Remark 1.23

In practice, there are often additional constraints, such as considering only solutions that are
monotonic or positive.

Remark 1.24

It is a reasonable assumption that ∥b∥ > δ, otherwise, the observed signal would be weaker than
the noise. This directly implies that u ̸= 0, and hence the problem cannot be trivially solved.

Definition 1.6 – Tikhonov Regularization

We consider a fixed α > 0 as a regularization parameter. We solve the minimization problem
without the constraint:

∥Au− b∥2 + α∥Lu∥2 = min

As α → 0, we get ∥Au − b∥ = 0, but ∥Lu∥ becomes arbitrarily large. As α → ∞, we get
∥Lu∥ = 0, but ∥Au − b∥ becomes arbitrarily large. The optimal α should be chosen so that
∥Au − b∥ ≈ ∥ε∥, if ε is known. Otherwise, it must be determined empirically until the result
”looks good”.

Remark 1.25

We now clarify the connection between the minimization and regularization problems: We re-
strict ourselves to a finite-dimensional problem, i.e., b ∈ Rn and u ∈ Rn. Then A,L are matrices,

22 CHAPTER 1. FAST FOURIER TRANSFORM

and ∥ · ∥ denotes the Euclidean norm. We have:

∥Lu∥22 = uTLTLu, ∥Au− b∥22 = (Au− b)T (Au− b) = uTATAu− 2uTAT b+ bT b.

The general solution f(u) = min and g(u) = 0 satisfies:

f ′(u) + g′(u)Tλ = 0, g(u) = 0,

where λ is a Lagrange multiplier. We then obtain the following two conditions:

2LTLu+ (2ATAu− 2AT b)Tλ = 0, λ ∈ R, ∥Au− b∥22 − δ2 = 0.

Thus, we have (LTL + λATA)u = λAT b. For a fixed λ, this is the solution to a minimization
problem without constraints:

∥Lu∥22 + λ∥Au− b∥22 = min, so for α =
1

λ
, we have : ∥Au− b∥22 + α∥Lu∥22 = min .

Theorem 1.17 – Tikhonov Regularization

Let Au = a ∗ u and Lu = u(p). The solution to the minimization problem for α > 0 as a given
regularization parameter is:

∥a ∗ u− b∥22 + α∥u(p)∥22 = min,

for u a 2π-periodic function with a square-integrable p-th derivative, and is given by the Fourier
coefficients:

û(n) =

{
|â(n)|2

|â(n)|2+αn2p · b̂(n)
â(n) if â(n) ̸= 0,

0 if â(n) = 0.

We define the regularization filter Φα(n):

Φα(n) :=
|â(n)|2

|â(n)|2 + αn2p
.

Proof. By the Parseval formula, the regularization problem is equivalent to:

∞∑
n=−∞

(∣∣∣â(n)û(n)− b̂(n)
∣∣∣2 + αn2p|û(n)|2

)
︸ ︷︷ ︸

=:Λn

= min,

where we have used the convolution theorem and the fact that û(p)(n) = (in)pû(n). The expression
becomes minimal if each individual summand is minimized.

For the n-th summand, which we define as Λn, we compute:

Λn = |â(n)|2|û(n)|2 − â(n)û(n)b̂(n)− â(n)û(n)b̂(n) + |b̂(n)|2 + αn2p|û(n)|2

=
(
|â(n)|2 + αn2p

)︸ ︷︷ ︸
=:r

· |û(n)|2︸ ︷︷ ︸
=:z2

−2Re

û(n)︸︷︷︸
=:z

â(n) · b̂(n)︸ ︷︷ ︸
=:s

+ |b̂(n)|2.

Thus, we must have:

r|z|2 − 2Re(z̄s) = min, or for q =
s

r
then applies |z|2 − 2Re(z̄q) = min

but due to quadratic completion it applies:

|z|2 − 2Re(z̄q) ≥ |z|2 − 2|z| · |q|+ |q|2 − |q|2 ≥ −|q|2

i.e.

û(n) =
|â(n)|2

|â(n)|2 + αn2p
b̂(n)

â(n)
.

1.6. NUMERICAL DECONVOLUTION, SMOOTHING OF MEASURED DATA 23

1.6 Numerical Deconvolution, Smoothing of Measured Data

Remark 1.26 – Motivation (Problem Statement)

We have the same assumptions as in the previous section and the problem a ∗ u+ ϵ = b is given,
where a, u, and b are 2π-periodic and ϵ ∈ L2. We are given the conditions:

∥u(p)∥L2 = min, ∥a · u− b∥L2 ≤ δ.

Now, b is measured at discrete points xj =
2π
N j, so we replace b with the trigonometric interpo-

lation polynomial bN , leading to the following conditions:

∥u(p)N ∥L2 = min, ∥a ∗ uN − bN∥L2 ≤ δ.

Definition 1.7 – Regularization

We choose α > 0 and obtain the regularization problem:

∥a ∗ uN − bN∥2L2 + α∥u(p)N ∥2L2 = min

among all trigonometric polynomials uN (x):

uN (x) =

N/2∑
n=−N/2

′ ûN (n)einx.

From the theorem in Section 5, we know that:

ûN (n) = Φα(n)
b̂N (n)

â(n)
, n = −N

2
, . . . ,

N

2
− 1.

Algorithm 1.2 – Practical Computation

We are given b(xj) for j = 0, . . . , N − 1, as well as a(x) or â(n).

1. Compute with the FFT, as in Section 4:(
b̂N (n)

)N
2 −1

n=−N
2

=
1

N
FN (b(xj))

N−1
j=0

with a total of N log2N operations.

2. The Fourier coefficients of the apparatus function â(n) are either given (often only â(n) is
provided, not a), or we approximate âM (n) with M ≥ N , potentially even M ≫ N .

3. Then calculate:

ûN (n) =
â(n)b̂N (n)

|â(n)|2 + αn2p
, n = −N

2
, . . . ,

N

2
− 1.

4. Next, compute the discrete Fourier transform using FFT:

(uN (xj))
N−1
j=0 = FN (ûN (n))

N
2 −1

n=−N
2

.

with N log2N operations.

24 CHAPTER 1. FAST FOURIER TRANSFORM

Remark 1.27 – Choice of Regularization Parameter

We want to know how to determine or approximate the regularization parameter α. If the
estimate (this term is also called the variance):

δ ≈

 1

N

N−1∑
j=0

|ε(xj)|2
 1

2

= ∥ε∥L2

is known, we start with some α and compute (using the Parseval formula):

d2α = ∥a ∗ uN − bN∥2L2 =

N
2∑

n=−N
2

′|â(n)ûN (n)− b̂N (n)|2 =

N
2∑

n=−N
2

′(1− Φα(n))
2|b̂N (n)|2.

We then choose α such that dα ≈ δ. Note that α 7→ dα is monotonically increasing, so this
process can be iterated relatively easily. At the optimal α, we compute ûN (n), and then, using
FFT, obtain uN (xj).

Remark 1.28

If the variance is unknown, the procedure makes no sense. However, statistical methods can
determine an optimal regularization parameter λ. This can be found in the literature under the
term “generalized cross-validation.”

Remark 1.29 – Smoothing of Data

We have measured values b(xj) and a variance of the measurement error that is approximately
δ. We are looking for a trigonometric polynomial uN with:

∥uN − bN∥2L2 =
1

N

N−1∑
j=0

|uN (xj)− b(xj)|2 ≤ δ2 = min, ∥u(p)N ∥L2 = min .

Using our formula, we can compute this directly. For the special case â(n) = 1, we have a∗u = u,
which corresponds to convolution with the Dirac delta function. For p = 2, we obtain:

ûN (n) =
1

1 + αn4
b̂N (n).

We note that the high-frequency components of b̂N (n) (for large n) are filtered out by this
formula, which results in smoothing. By the inverse Fourier transform, we eventually obtain the
desired uN .

Remark 1.30 – Approach for Non-Periodic Data

If the data are not periodic, we subtract a fitting line such that it fluctuates around a level and
then extend it periodically.

Remark 1.31

An alternative approach would be to smooth the data using splines instead of Fourier transforms.

1.6. NUMERICAL DECONVOLUTION, SMOOTHING OF MEASURED DATA 25

Remark 1.32 – Differentiation of noisy data

We want to find the derivative of the data, i.e., u = b′. Thus, we have:∫ x

0

u(t) dt = b(x)− b(0).

We have û(n) = inb̂(n), so:
1

in︸︷︷︸
=:â(n)

û(n) = b̂(n)

This leads to a new minimization problem:

N
2 −1∑

n=−N
2

∣∣∣∣ 1in ûN (n)− b̂N (n)

∣∣∣∣2 ≤ δ2, ∥uN ′′∥2L2 = min .

For the special case â(n) = 1
in , we get:

ûN (n) =
n−2

n−2 + αn4
inb̂N (n) =

in

1 + αn6
b̂N (n).

26 CHAPTER 1. FAST FOURIER TRANSFORM

Chapter 2

Eigenvalue Problems

In this chapter, n denotes a positive integer.

Review – Left/right eigenvectors

Let A ∈ Cn×n. If there is (λ, v) ∈ C× Cn such that Av = λv, then λ is called an eigenvalue of
A and v an eigenvector of A associated to λ. If there is (κ, u) ∈ C × Cn such that u∗A = κu∗,
then κ is also called an eigenvalue of A and u an eigenvector of A associated to κ. When it is
not specified, an eigenvector usually refers to a right eigenvector.

Question
Why don’t we need to distinguish left and right eigenvalues?

Answer
Due to the fact that the determinant of a matrix B is equal to the determinant of its transpose,
by taking B = A − λI we get χA(λ) = det(A − λI) = det(AT − λI) = χAT (λ), where χA is
the characteristic polynomial of A. Notice that u∗A = κu∗ ⇐⇒ AT ū = κū, hence κ is an
eigenvalue of AT . In other words, κ is also an eigenvalue of A. Hence, all left eigenvalues are
right eigenvalues, and there is no need to distinguish them.

Note
The eigenvectors are conventionally taken to be of unit ℓ2 norm, since for any c ∈ C,

Av = λv ⇐⇒ A(cv) = λ(cv).

Taking c = 1/∥v∥2, the eigenvector u = cv is of unit ℓ2 norm.

In this chapter, we will generally assume that eigenvectors are normalized.

Review – Diagonalization

A matrix A ∈ Cn×n is said to be diagonalizable if there is an invertible matrix P ∈ Cn×n and a
diagonal matrix Λ ∈ Cn×n such that

P−1AP = Λ.

2.1 Fundamentals

Motivation
There are numerous applications where eigenvalues are required:

1. In mechanics (physics), for example, one is interested in the natural vibrations of membranes.
If u(x) represents the deflection on a domain Ω, then we require that

−∆u = λu in Ω, u = 0 on ∂Ω.

27

28 CHAPTER 2. EIGENVALUE PROBLEMS

For a grid over Ω, we obtain the discretization

Av = λv.

2. In biology, the Lotka-Volterra predatorprey model is frequently used to describe the dynamics
of two interacting species: 

dx

dt
= αx− βxy

dy

dt
= −γy + δxy,

where x (resp. y) is the population density of prey (resp. predator). The system’s equilibrium
is obtained when dx

dt = dy
dt = 0, which yields two points:

{x = 0, y = 0} or

{
x =

γ

δ
, y =

α

β

}
.

The stability of fixed points is studied by looking at eigenvalues of a certain matrix.

• {x = 0, y = 0}: there are always one positive and one negative eigenvalues, hence the
equilibrium is unstable

•
{
x = γ

δ , y = α
β

}
: there are always two complex conjuguate eigenvalues, hence the pop-

ulation oscillates with time around that point, and the system is stable in a certain
sense.

3. Search engines: “The 25,000,000,000 Dollar Eigenvalue Problem”, which we will discuss
later in the context of Google’s mechanism.

2.1.1 Review (Characteristic Polynomial)

Review – Characteristic polynomial

For A ∈ Cn×n, the characteristic polynomial χA of A is defined by χA(λ) := det(A− λI).

The condition Av = λv is equivalent to det(A − λI) = χA(λ) = 0. One might consider first
computing the characteristic polynomial and then finding its roots to obtain the eigenvalues.

Note
The equivalence is shown as follows:

(A− λI)v = 0 for some v ̸= 0 ⇐⇒ (A− λI) is singular ⇐⇒ det(A− λI) = 0.

Example 2.1 – Poor Conditioning

Let A = diag(10, 11, . . . , 16) be a 7 × 7 matrix. Here, it is clear what the eigenvalues are, and
the characteristic polynomial is:

χA(λ) = (10− λ)(11− λ) · · · (16− λ) = −λ7 + 91λ6 − 3535λ5 + . . .− 31813200λ+ 57657600.

If one computes the roots of χA in single precision (i.e. eps = 10−8), the resulta is:

9.97, 11.31− 0.30i, 11.37 + 0.33i, 13.47− 0.76i, 13.57 + 0.76i, 15.51− 0.09i, 15.80 + 0.06i.

This does not correspond to the actual eigenvalues. The problem is that computing the roots of
a polynomial from its coefficients is a poorly conditioned problem.

aResults obtained via the Julia programming language with Float32 precision (giving between 6 and 9 digits
of precision)

2.1. FUNDAMENTALS 29

Remark 2.1 – How to explain poor conditioning of the root-finding problem?

Let

p(λ) =

n∑
k=0

akλ
k,

and we suppose its roots are simple (i.e. they are all distinct). The coefficients {ak} are the
“real” ones, but numerically they are only known up to a certain precision η: the computer only
sees coefficients {ak(1 + εk)} for some |εk| ≤ η, and the polynomial seen by the computer is

p(λ, η) =

n∑
k=0

(ak + akεk)λ
k =

n∑
k=0

ak + ak
εk
η︸ ︷︷ ︸

=:bk

η

λk = p(λ) + q(λ)η

with q(λ) =
∑n

k=0 bkλ
k and |bk| ≤ |ak|. We study the roots λ(η) of p(λ, η) = p(λ) + ηq(λ) as

a function of η. Let λ(0) = λ∗ be a simple root of p. We consider the differentiable function
η 7→ λ(η) defined by p(λ(η), η) = 0 for all η with |η| ≤ η0. It exists and is unique by the implicit
function theorem, hence:

∂p

∂λ
(λ(η), η)︸ ︷︷ ︸

p′(λ(η))λ′(η)+O(η)

+
∂p

∂η
(λ(η), η)︸ ︷︷ ︸
q(λ(η))

= 0.

Thus,

λ′(η) ≈ − q(λ(η))

p′(λ(η))
, λ(η) ≈ λ∗ + ηλ′(0),

and the relative error is:

|λ(η)− λ∗|
|λ∗|

≈ |ηλ′(0)|
|λ∗|

≈ |η| ·
∣∣∣∣ q(λ∗)

λ∗p′(λ∗)

∣∣∣∣ .
The term

∣∣∣ q(λ∗)
λ∗p′(λ∗)

∣∣∣ can become very large. Coming back to Example 2.1, we have

q(λ) =
1

η

(
−ε0λ7 + 91ε1λ

6 + · · · − 31813200ε6λ+ 57657600ε7
)
,

and thus for λ∗ = 10 we obtain

|q(λ∗)| ≤ 1

η

(
|ε0(λ∗)7|+ |91ε1(λ∗)6|+ · · ·+ |31813200ε6λ∗|+ |57657600ε7|

)
≤ |(λ∗)7|+ |91(λ∗)6|+ · · ·+ |31813200λ∗|+ |57657600|
≤ 107 + 91 · 107 + · · ·+ 31.8132 · 107 + 5, 76576 · 107

≈ 108,

and |p′(λ∗)| = 720 ≈ 103. So the relative error is η · 104, which means that we lose about four
significant digits in the decimal expansion of the roots. Therefore, it is numerically unreasonable
to compute the coefficients of the characteristic polynomial with a coarse precision.

Proposition 2.1 – Obtaining eigenvectors by similarity transformations

Let A ∈ Cn×n, and T ∈ Cn×n invertible. If B = T−1AT , then

Av = λv ⇐⇒ TBT−1v = λv ⇐⇒ B(T−1v) = λ(T−1v).

Thus, B and A have the same eigenvalues, and v is an eigenvector of A if and only if T−1v is an
eigenvector of B.

30 CHAPTER 2. EIGENVALUE PROBLEMS

Definition 2.1 – Unitary/orthogonal matrix

The matrix U ∈ Cn×n is unitary if U∗U = UU∗ = I, where U∗ = UT . In other words, U−1 = U∗.
If U is real, then U∗ = UT and U is said to be orthogonal.

Exercise
Let U1, . . . , Uk ∈ Cn×n unitary matrices. Show that V = U1 · · ·Uk is a unitary matrix.

Answer
We have V ∗ = U∗

k · · ·U∗
1 hence, owing to the unitary character of each matrix Uℓ,

V ∗V = U∗
k · · ·U∗

1U1 · · ·Uk = U∗
k · · ·U∗

2U2 · · ·Uk = · · · = I,

and

V V ∗ = U1 · · ·UkU
∗
k · · ·U∗

1 = U1 · · ·Uk−1U
∗
k−1 · · ·U∗

1 = · · · = I.

Theorem 2.1 – Schur’s normal form (1909)

Let A ∈ Cn×n, there is a unitary matrix U such that

U∗AU =


λ1 ⋆ . . . ⋆

0 λ2
. . .

...
...

. . .
. . . ⋆

0 . . . 0 λn


is an upper triangular matrix. This form is called Schur’s normal form.

Proof. The characteristic polynomial χA(λ) has a root λ1 ∈ C, which is an eigenvalue of A. Thus,
there exists an eigenvector 0 ̸= v1 ∈ Cn such that Av1 = λ1v1. We can assume without loss of
generality that ∥v1∥2 = 1. We now construct (using Gram-Schmidt) a matrix V1 = (v1, v2, . . . , vn)
with v2, . . . , vn chosen so that v1, v2, . . . , vn form an orthonormal basis (ONB) of Cn. In other
words, V1 is a unitary matrix.

We now consider

AV1 = (Av1, Av2, . . . , Avn) = V1

(
λ1 ⋆

0 Â

)
We proceed in the same way with the matrix Â ∈ C(n−1)×(n−1): there exists an eigenvalue λ2 ∈ C
of Â and an associated unit eigenvector v̂2, so one can construct an ONB of Cn−1 by the Gram-
Schmidt procedure. This yields a unitary matrix V2 ∈ C(n−1)×(n−1) such that

ÂV2 = V2

(
λ2 ⋆

0
ˆ̂
A

)
⇐⇒ Â = V2

(
λ2 ⋆

0
ˆ̂
A

)
V ∗
2 .

Hence,

AV1 = V1

λ1 ⋆

0 V2

(
λ2 ⋆

0
ˆ̂
A

)
V ∗
2

 = V1

(
1 0
0 V2

)λ1 ⋆ ⋆
0 λ2 ⋆

0 0
ˆ̂
A

(1 0
0 V ∗

2

)
.

Finally, since

(
1 0
0 V ∗

2

)
is a unitary matrix, we get

AV1

(
1 0
0 V2

)
= V1

(
1 0
0 V2

)λ1 ⋆ ⋆
0 λ2 ⋆

0 0
ˆ̂
A

 .

2.1. FUNDAMENTALS 31

By repeating this process, we get a matrix U ∈ C(n−1)×(n−1) of the form

U = V1

(
1 0
0 V2

)1 0 0
0 1 0
0 0 V3

 . . .



1 0 . . . 0 0

0 1
. . .

...
...

...
. . .

. . . 0
...

0 . . . 0 1 0
0 0 Vn

 ,

where each matrix Vk ∈ C(n−k+1)×(n−k+1) is unitary. The matrix U is unitary as a product of
unitary matrices, and it satisfies

AU = U


λ1 ⋆ . . . ⋆

0 λ2
. . .

...
...

. . .
. . . ⋆

0 . . . 0 λn


The claimed result is obtained after left-multiplying by U∗.

Review 2.1 – Hermitian and symmetric matrices

A matrix A ∈ Cn×n is said to be Hermitian if A∗ = A and skew-Hermitian if A∗ = −A, where
A∗ = ĀT . A matrix A ∈ Rn×n is said to be symmetric if AT = A, and skew-symmetric if
AT = −A.

Note
In some contexts, an Hermitian/symmetric matrix can also be called self-adjoint when seen as a
linear operator.

Definition 2.2 – Normal matrix

A matrix A is normal if AA∗ = A∗A (when A ∈ Cn×n) or if AAT = ATA (when A ∈ Rn×n).

Lemma 2.1

A normal upper triangular matrix is diagonal.

Proof. Let R ∈ Cn×n a normal upper triangular matrix

R =


r11 . . . r1,n
0
...
0

R1

 ,

with R1 ∈ C(n−1)×(n−1) an upper triangular matrix. Since R is normal, R∗R = RR∗ and we get

r1,1 0 . . . 0
...

r1,n
R∗

1



r1,1 . . . r1,n
0
...
0

R1

 =


r1,1 . . . r1,n
0
...
0

R1


r1,1 0 . . . 0

...
r1,n

R∗
1

 ,

i.e. 
|r1,1|2 r1,1r1,2 . . . r1,1r1,n
r1,2r1,1

...
r1,nr1,1

(r1,i+1r1,j+1)
n−1
i,j=1 +R∗

1R1

 =


∑n

j=1 |r1,j |2
(
r1,2 . . . r1,n

)
R∗

1

R1

r1,2...
r1,n

 R1R
∗
1



32 CHAPTER 2. EIGENVALUE PROBLEMS

The component at index (1, 1) yields |r1,1|2 =
∑n

j=1 |r1,j |2, i.e. r1,j = 0 for j = 2, . . . , n. Hence,


|r1,1|2 0 . . . 0

0
...
0

R∗
1R1

 =


|r1,1|2 0 . . . 0

0
...
0

R1R
∗
1

 ,

i.e. the matrix R1 is normal. In other words, the first row of a normal upper triangular matrix
has all its off-diagonal terms equal to zero. Since R1 is also a normal upper triangular matrix, by
induction we obtain that R is a diagonal matrix.

Theorem 2.2 – Spectral theorem

A matrix A ∈ Cn×n is normal if and only if there is a unitary U ∈ Cn×n such that

U∗AU =

λ1 0
. . .

0 λn

 .

Proof. [⇒] The Schur normal form of A yields a unitary matrix U and an upper triangular matrix
R such that U∗AU =: R. Since A is normal,

R∗R = U∗A∗UU∗AU = U∗A∗AU = U∗AA∗U = U∗AUU∗A∗U = RR∗.

The matrix R is normal and upper triangular, hence diagonal.

[⇐] One has A = U diag(λ1, . . . , λn)U
∗, thus

A∗A = U diag(λ1, . . . , λn)U
∗U diag(λ1, . . . , λn)U

∗ = U diag(|λ1|2, . . . , |λn|2)U∗,

and

AA∗ = U diag(λ1, . . . , λn)U
∗U diag(λ1, . . . , λn)U

∗ = U diag(|λ1|2, . . . , |λn|2)U∗.

The matrix A is then normal.

Question
Show that the λj in the spectral theorem are the eigenvalues of A.

Answer
Let κ an eigenvalue of A, it is a root of the characteristic polynomial χA: χA(κ) = 0. On the one
hand

det(U∗AU − κI) = det(U∗AU − κU∗U) = det(U∗)χA(κ) det(U) = χA(κ),

where the last equality is due to U being unitary hence det(U∗) det(U) = det(U−1) det(U) = 1. On
the other hand,

det(U∗AU − κI) = det(diag{λ1 − κ, . . . , λn − κ}).

Thus, κ is a root of χA if and only if det(diag{λ1 − κ, . . . , λn − κ}) = 0. The determinant of a
diagonal matrix is equal to the product of its diagonal elements, hence it is zero if and only if at
least one element is zero, i.e. if there is a j such that κ = λj. This shows sp(A) ⊂ {λ1, . . . , λn}.
It is clear that {λ1, . . . , λn} ⊂ sp(A), since χA(λj) = det(U∗AU − λjI) = 0.

2.2. CONDITIONING OF THE EIGENVALUE PROBLEM 33

Theorem 2.3 – Jordan normal form

For every A ∈ Cn×n, there is an invertible matrix T such that

T−1AT = J =


Jn1(λ1) 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 Jnk

(λk)

 ,

with λk the eigenvalues of A and nk ∈ N∗. The Jordan blocks are given by

Jm(λ) =



λ 0 0

1 λ
. . .

...

0 1
. . .

. . .
...

...
. . .

. . .
. . . 0

0 . . . 0 1 λ


∈ Cm×m.

The number of Jordan blocks associated to a given λ is given by dimker(A− λI), and the sum
of the sizes of all Jordan blocks associated to λ is given by its algebraic multiplicity (i.e. the
multiplicity of λ as a root of χA).

Proof. Linear Algebra II.

Remark 2.2

On the sub-diagonal of a Jordan block, there can be entries ε ̸= 0 instead of ones. Sometimes,
the ones of the sub-diagonal are instead on the sup-diagonal.

2.2 Conditioning of the Eigenvalue Problem

Motivation
Let A = (aij) be a given matrix. Due to rounding errors, we can only work with a perturbed matrix

Ã = (ãij) such that ãij = aij(1+ εij) with |εij | ≤ η, where η > 0 is the numerical precision. Thus,
we can write:

Ã = A+ η · C, cij = aij
εij
η
, |cij | ≤ |aij |.

We consider A(η) = A+ ηC for small η. We want to find an estimate for the eigenvalues like:

|λ(η)− λ(0)| ≤ const. · η.

Is this even possible, and if so, with which constant? We will see with the following theorem
that this depends on a constant that depends on A.

Lemma 2.2

Let A ∈ Cn×n and λ ∈ C a simple root of χA. Let u, v ∈ Cn be respectively left and right
eigenvectors of A associated to λ. Then

u∗v ̸= 0.

Proof. (Done in Exercise). Since λ is a simple root of χA, its algebraic multiplicity is one. With
respect to the Jordan form, it means that the sum of the sizes of all Jordan blocks associated to λ
is one. Hence, the Jordan form of A is

T−1AT =

(
λ 0
0 J ′

)
,

34 CHAPTER 2. EIGENVALUE PROBLEMS

where J ′ ∈ C(n−1)×(n−1) is a matrix in Jordan form and T ∈ Cn×n is an invertible matrix. Since

AT = T

(
λ 0
0 J ′

)
and T−1A =

(
λ 0
0 J ′

)
T−1,

we deduce that the first column of T is a multiple of v, and that the first row of T−1 is a multiple
of u∗. Thus, there are nonzero complex coefficients α, β such that

v = αT·,1 and u = β(T−∗)·,1.

We can write T = (v/α, T1) and T−∗ = (u/β, Z1) for some matrices T1, Z1 ∈ Cn×(n−1). By
definition,

I = T−1T = (T−∗)∗T =

(
u∗/β̄
Z∗
1

)(
v/α T1

)
=

(
u∗v/(αβ̄) u∗T1/β̄
Z∗
1v/α Z∗

1T1

)
.

Looking at the component at index (1, 1), we get u∗v = αβ̄ ̸= 0.

Definition 2.3 – Condition number of an eigenvalue

Let A ∈ Cn×n and λ ∈ C an eigenvalue. Let u (resp. v) denote a left (resp. right) eigenvector
associated to λ. The quantity 1/|u∗v| is called the condition number of the eigenvalue λ.

A “well-conditioned” matrix means that small perturbations only result in small changes. For
a given matrix A ∈ Cn×n, if the condition number of an eigenvalue λ is large it means that small
perturbations of A may result in large perturbations of λ. The condition number of an eigenvalue
can be understood as a measure of the “continuity” of this eigenvalue depending on the size of the
perturbation.

Theorem 2.4 – Error estimate for a simple eigenvalue

Let A ∈ Cn×n and λ a simple root of the characteristic polynomial χA. For small ε, an eigenvalue
of A(ε) = A+ εC satisfies the following relation:

λ(ε) = λ+ ε
u∗Cv

u∗v
+O(ε2)

where v is an eigenvector of A associated to λ and u is a left eigenvector of A associated to λ.

Proof. Using Lemma 2.2, we know that u∗v ̸= 0. We start by showing that there is a differentiable
eigenvalue λ(ε) and an associated normalized eigenvector v(ε) depending on ε such that λ(0) = λ
and v(0) = v. This is done using the implicit function theorem.

For that, we consider the function

F (ε, κ, w) :=

(
(A(ε)− κI)w
w∗w − 1

)
.

It is a C1 function of the three variables, and F (0, λ, v) = 0 by definition of λ and v. We compute
the Jacobian of F with respect to (κ,w), evaluated at the point (ε = 0, κ = λ,w = v):

(
D(κ,w)F

)
(0, λ, v) = (DκF,Dw1F, . . . ,DwnF) (0, λ, v) =

(
−v A− λI
0 v∗

)
.

For the derivatives with respect to a complex variable z = x+ iy ∈ C, we have used the Wirtinger

derivative: ∂
∂z = 1

2

(
∂
∂x − ∂

∂y

)
. We now show that this matrix is nonsingular, i.e. that its kernel

is the zero element. Assume the matrix is singular, then one can find (x, y) ∈ (C×Cn) \ {0} such
that (

−v A− λI
0 v∗

)(
x
y

)
= 0 ⇐⇒

{
− vx+ (A− λI)y = 0

v∗y = 0

2.2. CONDITIONING OF THE EIGENVALUE PROBLEM 35

Left-multiply the first equation by u∗ to obtain

−xu∗v + u∗(A− λI)y = 0.

However, since u∗(A − λI) = 0 and u∗v ̸= 0, we get x = 0. The equation (A − λI)y = 0 means
y = ker(A− λI). But since λ is an eigenvalue of algebraic multiplicity one, it is also of geometric
multiplicity one which means that dimker(A − λI) = 1. Since the kernel is a C-linear space and
we know v ∈ ker(A − λI), we obtain ker(A − λI) = span{v} = {αv : α ∈ C}. Therefore there is
c ∈ C such that y = cv. The equation v∗y = 0 yields c = 0 since v∗v = 1. Hence, there is no
(x, y) ∈ (C× Cn) \ {0} such that (

−v A− λI
0 v∗

)(
x
y

)
= 0.

In other words, the matrix
(
D(κ,w)F

)
(0, λ, v) is invertible, i.e. its determinant is nonzero. The

implicit function theorem now applies, and we get the existence of a unique differentiable function
φ(ε) = (λ(ε), v(ε)) ∈ C× Cn such that F (ε, λ(ε), v(ε)) = 0 for |ε| small enough, i.e.

(A(ε)− λ(ε)I) v(ε) = 0, ∥v(ε)∥2 = 1, v(0) = v, λ(0) = λ.

We have A(ε)v(ε) = λ(ε)v(ε), i.e.

(A+ εC)(v + εv′(0) +O(ε2)) = (λ+ ελ′(0) +O(ε2))(v + εv′(0) +O(ε2)).

We multiply this out and compare the powers of ε:

ε0 : Av = λv, ε1 : Cv +Av′(0) = λv′(0) + λ′(0)v.

We obtain: (A− λI)v′(0) = −Cv+ λ′(0)v. By left multiplying with u∗ and using u∗(A− λI) = 0,
we obtain:

0 = −u∗Cv + λ′u∗v ⇒ λ′ =
u∗Cv

u∗v
.

Remark 2.3

The error estimate for the (right) eigenvectors can be shown to be

vj(ε) = vj + ε

n∑
i=1,i̸=j

1

λj − λi

u∗iCvj
u∗i vi

vi +O(ε2).

This is done in an Exercise.

Example 2.2

1. If A is normal, then the left and right eigenvectors are identical, because there is a U
unitary (by the spectral theorem) such that:

U∗AU = diag(λ1, . . . , λn).

After multiplying by U∗ on the right, we get U∗A = diag(λ1, . . . , λn)U
∗, i.e. the left

eigenvectors are in the matrix U . If we multiply instead by U on the left, we get
AU = U diag(λ1, . . . , λn), i.e. the right eigenvectors are in the matrix U . Hence, left
and right eigenvectors agree. When the eigenvalues are all simple roots of the characteris-
tic polynomial, we get

1

|u∗v|
= 1

for all eigenvalues, if u and v are normalized. In this case, the problem is well-conditioned.

36 CHAPTER 2. EIGENVALUE PROBLEMS

We could even show here that not only

|λ(ε)− λ| ≤ |ε| · |v∗Cv|

holds, but also
|λ(ε)− λ| ≤ |ε|∥C∥2.

2. If A is not normal, u∗v can be arbitrarily small, e.g.,

A =

(
1 α
0 2

)
, λ = 1, v =

(
1
0

)
, u∗ =

1√
1 + α2

(
1 −α

)
.

For a very large α, u is almost the second unit vector, and then:

u∗v =
1√

1 + α2
→ 0.

Here, the problem would be very poorly conditioned.

Remark 2.4 – Consideration for multiple eigenvalues

(Details given in the tutorials). We cannot transfer the proof because the conditions for the
implicit function theorem are not guaranteed. We consider here as an example the matrix with
multiple Jordan blocks:

A =



λ 1 0 . . . 0

0 λ
. . .

. . .
...

...
. . .

. . .
. . . 0

... . . .
. . . λ 1

0 0 λ


which represents a Jordan block of size n × n. We consider the characteristic polynomial of
A+ εC, where

C =


0
...
0

0

c 0 . . . 0

 .

We have
χA+εC(λ)(x) = (λ− x)n + ε(−1)n+1c.

If λ(ε) is an eigenvalue of A+ εC, then:

(λ− λ(ε))n = ε(−1)nc =⇒ λ(ε) = λ+ ε
1
n c

1
n ,

where the n-th root is considered as a function C → C. The problem is therefore not well-
conditioned, since the O(ε) estimate does not hold. Here, it is difficult to compute eigenvalues
since they are all close to each other.

Algorithm 2.1 – QR Algorithm, simple version

We want to compute all eigenvalues of a matrix A. For this, we consider the simple iteration:

1. A0 := A

2. We then compute for all k = 0, 1, 2, . . .: Ak = QkRk with the QR decomposition and set
Ak+1 := RkQk. Essentially, we then have that Ak → R converges, where R is a right upper

2.3. POWER METHOD 37

triangular matrix in Schur’s normal form, since:

A = Q∗RQ with Q = Q0Q1Q2 . . .

Remark 2.5

We will see in Page 43 that we can prove convergence.

2.3 Power Method

Algorithm 2.2 – Power method

To compute individual eigenvalues and eigenvectors of a matrix A ∈ Cn×n, we consider the
following procedure: for y0 ∈ Cn arbitrary, set yk+1 := Ayk for k = 1, 2, . . ., i.e. yk = Aky0.

If one has an approximation to a desired eigenvalue, the inverse power method can be more
efficient.

Algorithm 2.3 – Inverse power method (Wielandt iteration)

Let an approximation µ to a desired eigenvalue λ1 be known, which does not necessarily have
to be the largest eigenvalue. Assume

|µ− λ1| ≪ |µ− λj | ∀j = 2, . . . , n,

we have also:
1

|µ− λ1|
≫ 1

|µ− λj |
.

Since 1
µ−λj

are the eigenvalues of the matrix (µI − A)−1, we apply the power method to (µI −
A)−1. This can be done without computing the inverse matrix, by only solving the associateed
linear system: let y0 be a starting vector, we solve in the k-th step:

(µI −A)yk+1 = yk k = 0, 1, 2, . . .

We need only one LR decomposition for all iteration steps (since the matrix is the same for each
step).

Remark 2.6 – Convergence speed

The convergence speed of the inverse power method may be much better than that of the normal
power method. We can, for example, get a rough estimate of the eigenvalue and eigenvector with
the normal power method, and then use the inverse power method to obtain precise estimates.

Definition 2.4 – Rayleigh quotient

Let A ∈ Cn×n and yk as in the power method algorithm. The Rayleigh quotient is defined by:

y∗kAyk
y∗kyk

.

Theorem 2.5 – Convergence of the power method

Let A ∈ Cn×n be diagonalizable, with T−1AT = diag(λ1, . . . , λn) and T = (v1| . . . |vn), where
Avi = λvi. Assume that |λ1| > |λ2| ≥ |λ3| ≥ . . . ≥ |λn|. If y0 = α1v1 + α2v2 + . . .+ αnvn with
α1 ̸= 0, then for yk+1 = Ayk:

38 CHAPTER 2. EIGENVALUE PROBLEMS

1. We have:

yk = λk1

(
α1v1 +O

(∣∣∣∣λ2λ1
∣∣∣∣k
))

.

We note that 1
λk
1
yk converges to an eigenvector α1v1 corresponding to the largest eigenvalue.

2. For the Rayleigh quotient, we have

y∗kAyk
y∗kyk

= λ1 +O

(∣∣∣∣λ2λ1
∣∣∣∣k
)
.

If A is normal, then:

y∗kAyk
y∗kyk

= λ1 +O

(∣∣∣∣λ2λ1
∣∣∣∣2k
)
.

Proof.

1. Let y0 = α1v1 + α2v2 + . . . + αnvn with α1 ̸= 0. We assume without loss of generality that
∥vj∥2 = 1 for all j. Then

y1 = Ay0 = α1λ1v1 + α2λ2v2 + . . .+ αnλnvn,

and iteratively we obtain:

yk = Aky0 = α1λ
k
1v1 + α2λ

k
2v2 + . . .+ αnλ

k
nvn

= λk1

(
α1v1 + α2

(
λ2
λ1

)k

v2 + . . .+ αn

(
λn
λ1

)k

vn

)
.

2. We have:

y∗kyk =

n∑
i=1

n∑
j=1

αiλi
k
αjλ

k
j v

∗
i vj =

n∑
i=1

|αi|2|λi|2k v∗i vi︸︷︷︸
=1

+

n∑
i=1

n∑
j ̸=i

αiλi
k
αjλ

k
j v

∗
i vj

= |λ1|2k
(
|α1|2 +

n∑
i=1

|αi|2
∣∣∣∣ λiλ1

∣∣∣∣2k
)

+ |λ1|2k
n∑

i=1

n∑
j ̸=i

αiαj

λi
k
λkj

|λ1|2k
v∗i vj

= |α1|2|λ1|2k
(
1 +O

(∣∣∣∣λ2λ1
∣∣∣∣k
))

.

Then

y∗kAyk = y∗kyk+1 =

n∑
i=1

|αi|2|λi|2kλiv∗i vi +
n∑

i=1

n∑
j ̸=i

αiλi
k
αjλ

k+1
j v∗i vj

= |α1|2|λ1|2kλ1

(
1 +O

(∣∣∣∣λ2λ1
∣∣∣∣k
))

.

Then

y∗kAyk
y∗kyk

=

|α1|2|λ1|2kλ1
(
1 +O

(∣∣∣λ2

λ1

∣∣∣k))
|α1|2|λ1|2k

(
1 +O

(∣∣∣λ2

λ1

∣∣∣k)) = λ1

(
1 +O

(∣∣∣∣λ2λ1
∣∣∣∣k
))

.

For normal matrices, the terms v∗i vj = 0 vanish for i ̸= j since the eigenvectors can be chosen
to be orthogonal, and the claim follows for these matrices as well.

2.3. POWER METHOD 39

Example 2.3 – Application of the power method

Let

A =

2 1 0
1 2 1
0 1 2

 ,

λ1 = 2 +
√
2 ≈ 3.4142 is the largest eigenvalue. We get for a starting vector y0 the following

iteration:

y0 =

1
1
1

 , y1 =

3
4
3

 , y2 =

10
14
10

 , . . .

and the Rayleigh quotient is then:

y∗1Ay1
y∗1y1

=
y∗1y2
y∗1y1

=
116

34
≈ 3.4117.

Exercise
Show that the rate of convergence for this example is ≈ 0.59.

Example 2.4 – Application of the inverse power method

Let

A =

2 1 0
1 2 1
0 1 2


Let µ = 3.41 and we choose y0 =

 1
1.4
1

. We obtain:

y∗1(µI −A)−1y1
y∗1y1

=
y∗1y2
y∗1y1

= −237.3288707 ≈ 1

µ− λ1

with which we then obtain λ1 ≈ 3.414213562 and all given digits agree with the largest eigenvalue,
2 +

√
2.

Remark 2.7

To prevent overflow (the numbers becoming larger than the computer’s largest representable
number), we can set:

zk+1 := Ayk, yk+1 :=
1

∥zk+1∥∞
zk+1,

where ∥zk+1∥∞ is the largest component of zk+1 in terms of magnitude. Another option is to
normalize yk to be of unit norm at every step, or every few steps. In this case,

zk+1 := Ayk, yk+1 :=
1

∥zk+1∥2
zk+1.

Remark 2.8 – Application of the power method (Google)

What makes (or made) Google unique is an algorithm that provides a suitable order of results,
the so-called PageRank algorithm, which is about characterizing the importance of web pages.
Google determines the rank r(P) of a page P by:

r(P) =
∑

Q∈BP

r(Q)

|Q|

40 CHAPTER 2. EIGENVALUE PROBLEMS

where BP = {all pages that link to P}, and where |Q| is the number of links from Q (to any
page!). This is a recursive definition, but one can see that the vector y = (r(P1), . . . , r(PN)) is
an eigenvector of a matrix A associated to eigenvalue 1. The matrix A = (aij) is given by

aij =

{
1

|Pj | if Pj links to Pi,

0 otherwise.

Since the column sum of A is 1, 1 is the largest eigenvalue in magnitude (see the following
exercise). Thus, the power method yk+1 = Ayk yields the desired eigenvector y.
For this problem, there is an article ”The 25,000,000,000 Dollar Eigenvalue Problem: The Linear
Algebra Behind Google” by Bryan and Leisea (2005) and Langville and Meyerb (2006) in SIAM
Review.

ahttps://epubs.siam.org/doi/10.1137/050623280
bhttps://www.jstor.org/stable/j.ctt7t8z9

Exercise
Show that, if a matrix A with non-negative components has a column sum ≤ c (i.e.

∑n
i=1Ai,j ≤ c,

∀j), then λj ≤ c for all j. If the column sum is = c, then c is the largest eigenvalue.

Answer
Note that A and AT have the same characteristic polynomial, hence the roots of χA and χAT are
the same and the eigenvalues of AT and A are equal. Apply the Gershgorin circle theorem on AT :

sp(A) = sp(AT) ⊂
n⋃

j=1

µ ∈ C : |µ− aj,j | ≤
∑
k ̸=j

|ak,j |

 .

Since A has non-negative components,
∑

k ̸=j |ak,j | =
∑

k ̸=j ak,j, hence |µ− aj,j | ≤ c− aj,j. More-
over, the reverse triangle inequality yields

|µ− aj,j | ≥ ||µ| − |aj,j || .

To show this, apply the triangle inequality to |µ| = |µ± aj,j | and |aj,j | = |aj,j ± µ|. Thus,

||µ| − |aj,j || ≤ c− aj,j ,

and
|µ| − aj,j ≤ c− aj,j , if |µ| ≥ aj,j

−|µ|+ aj,j ≤ c− aj,j , if |µ| ≤ aj,j .

The first line yields |µ| ≤ c, and the second line is for |µ| ≤ aj,j ≤ c. In both cases, we obtain
|µ| ≤ c, i.e. all eigenvalues of A are smaller or equal to c.

Now, if the column sum is equal to one we have 1TA = c1T , where 1 = (1, . . . , 1), which means
that c is indeed an eigenvalue of A, since it is an eigenvalue of AT .

2.4 Simultaneous Iteration and QR Algorithm

Motivation
In the following, let A be a real matrix whose eigenvalues satisfy

|λ1| > |λ2| > |λ3| > . . . > |λn|

i.e. in particular, A is diagonalizable. We want to compute not only the first but also the second,
third, etc., eigenvalues.

https://epubs.siam.org/doi/10.1137/050623280
https://www.jstor.org/stable/j.ctt7t8z9

2.4. SIMULTANEOUS ITERATION AND QR ALGORITHM 41

Review – Power method

Let y0 be arbitrary and yk+1 = Ayk. We know that:

yk = λk1

(
α1ṽ1 +O

(∣∣∣∣λ2λ1
∣∣∣∣k
))

= λk1

|α1| sgn(α1)ṽ1︸ ︷︷ ︸
=:v1

+O

(∣∣∣∣λ2λ1
∣∣∣∣k
) ,

where we assume that α1 ̸= 0 and ṽ1 is an eigenvector with ∥ṽ1∥2 = 1. The vector v1 is also an
eigenvector of A with ∥v1∥2 = 1. Thus, yk

∥yk∥ → v1 if λ1 > 0 and (−1)k yk

∥yk∥ → v1 if λ1 < 0. In

general, (sgnλ1)
k yk

∥yk∥ → v1.

Algorithm 2.4 – Extension of the power method

Let q0 be arbitrary with ∥q0∥2 = 1. We consider the iteration Aqk = λ
(k+1)
1 qk+1 with ∥qk+1∥2 = 1

and sgnλ
(k+1)
1 = sgn(qTk Aqk). If k is large, this is sgnλ1. We know that qk → v1 converges and

λ
(k)
1 → λ1 with the convergence rate

∣∣∣λ2

λ1

∣∣∣.
Idea (Computation of the next eigenvalue)
Now let λ1, v1 be known and we want to compute λ2, v2. We consider the orthogonal complement
to Rv1:

V = {u ∈ Rn | vT1 u = 0}.
We know dimV = n− 1. Furthermore, we consider the following mapping:

L1 := P ◦ (A|V) : V → Rn → V

where P is an orthogonal projection: Rn → V . We have q = αv1 + u ∈ Rn, where u ∈ V . Then
vT1 q = α, with which we obtain α, noting that ∥v1∥ = 1. Then Pq = u = q − αv1 = (I − v1v

T
1)q.

Thus, for u ∈ V :
L1(u) = (I − v1v

T
1)Au.

With the next theorem, we obtain that L1 has precisely the remaining eigenvalues of A.

Theorem 2.6 – Eigenvalues of L1

The eigenvalues of L1 are λ2, . . . , λn.

Proof. By Schur’s normal form, we know that for the matrix A, we have:

U∗AU =

λ1 ⋆ ⋆
. . . ⋆

0 λn

 = R

where U = (u1| . . . |un) is a unitary matrix with u1 = v1. The vectors (u2, . . . , un) form an ONB
of V , in particular vT1 uj = 0 for j ≥ 2. Then

L1(ui) = (I − v1v
T
1)Aui = (I − v1v

T
1)(AU)·,i = (I − v1v

T
1)(UR)·,i

= (I − v1v
T
1)(v1r1,i + . . .+ ui−1ri−1,i + uiλi)

= u2r2,i + . . .+ ui−1ri−1,i + uiλi.

From this formula, we can deduce the representation matrix of L1 with respect to the basis
(u2, . . . , un), which looks as follows: λ2 ⋆ ⋆

0
. . . ⋆

0 0 λn


And this matrix has precisely the eigenvalues λ2, . . . , λn.

42 CHAPTER 2. EIGENVALUE PROBLEMS

Remark 2.9

It may be sometimes convenient to have L1 in the (u1, . . . , un) basis. In this case, 0 is another
eigenvalue of L1 and its matrix in the (u1, . . . , un) basis reads

0 0 0 0
0 λ2 ⋆ ⋆

0 0
. . . ⋆

0 0 0 λn


The idea of orthogonalizing Au with respect to the previously obtained eigenvectors is called
deflation.

Algorithm 2.5 – Computation of the second eigenvalue

To compute λ2, we apply the power method to L1: let p0 ∈ V be arbitrary with ∥p0∥2 = 1.
Then by the power method:

L1(pk) = (I − v1v
T
1)Apk = λ

(k+1)
2 pk+1 with ∥pk+1∥2 = 1, sgnλ

(k+1)
2 = sgn pTk L1(pk).

Thus, λ
(k)
2 → λ2 and pk → u2 etc., and we obtain Schur’s normal form.

Algorithm 2.6 – Modification of the deflated power method

We do not compute first λ1 and v1, but we use simultaneous iteration for λ1 and λ2. This gives
us the following algorithm: let q0, p0 be arbitrary with ∥q0∥2 = ∥p0∥2 = 1 and q0 ⊥ p0. Then we
compute:

Aqk = λ
(k+1)
1 qk+1, ∥qk+1∥2 = 1, sgnλ

(k+1)
1 = sgn qTk Aqk,

and
(I − qk+1q

T
k+1)Apk = λ

(k+1)
2 pk+1, ∥pk+1∥2 = 1, sgnλ

(k+1)
2 = sgn pTkApk.

The orthogonality pk+1 ⊥ qk+1 holds.

Algorithm 2.7 – Alternative notation for simultaneous iteration

We write alternatively, but equivalently to Algorithm 2.6,

A(qk, pk) = (qk+1, pk+1)

(
λ(k+1) αk+1

0 λ
(k+1)
2

)
, αk+1 = qTk+1Apk.

The right-hand side can be obtained by applying the QR decomposition to the n × 2 matrix
A(qk, pk).

Algorithm 2.8 – Generalization of the algorithm

We choose for U0 an arbitrary orthogonal matrix (for example U0 = I). We consider the iteration:

AUk = Uk+1Rk+1,

which is precisely the QR algorithm. Then

Rk →

λ1 ⋆ ⋆

0
. . . ⋆

0 0 λn


converges and Uk → (u1, . . . , un) converges. By doing this, we obtain Schur’s normal form.

2.5. TRANSFORMATION TO HESSENBERG FORM 43

Algorithm 2.9 – QR algorithm

We set as above: Qk := UT
k−1Uk. Then

Qk+1Rk+1 = UT
k Uk+1Rk+1︸ ︷︷ ︸

=AUk

= UT
k AUk = UT

k AUk−1︸ ︷︷ ︸
UkRk

Qk = RkQk.

Thus, we obtain the following algorithm:

1. A0 = A = Q0R0 (QR decomposition in the last step)

2. A1 = R0Q0 = Q1R1 (QR decomposition)

3. A2 = R1Q1 = Q2R2 (QR decomposition)

4. ...

This justifies Algorithm 2.1.

Since the QR algorithm is a just a power method applied to n orthonormal eigenvectors, with
eigenvalues all distinct, it converges.

Remark 2.10 – Historical note on the QR algorithm

The algorithm goes back to Rutishauser, 1958, who, however, had used the LR decomposition.
The QR algorithm that we consider here goes back to Francis, 1961, and Kublanovskaya, 1961.

Motivation (Outlook)

1. The QR decomposition of an arbitrary matrix is performed with O(n3) operations, which is
too expensive. We therefore first transform A into Hessenberg form, i.e. QTAQ = H (which
is almost triangular form and has a diagonal below the main diagonal), which is about as
expensive as a QR decomposition. If A is symmetric, then we obtain for H a tridiagonal
matrix. For the QR decomposition of a Hessenberg matrix, we need only O(n2) operations,
or O(n) operations if A is symmetric. Then all Ak are again Hessenberg matrices, as we will
see in the next section.

2. The convergence speed is very slow, about
∣∣∣λ2

λ1

∣∣∣. We consider the idea of shifting the matrix

A, i.e. we consider Ak − µkI, where we choose the parameter µk such that the convergence
is accelerated. We will consider this procedure in the sixth section.

3. We have not yet captured complex eigenvalues. We cannot converge a real matrix Ak to a real
upper triangular matrix if there are complex eigenvalues. In the case of a complex eigenvalue,
A converges to a matrix in (almost) Schur’s normal form with a 2 × 2 block on the main
diagonal: (

a
(k)
r,r a

(k)
r,r+1

a
(k)
r+1,r a

(k)
r+1,r+1

)
This converges to complex conjugate eigenvalues α± iβ, as we will see in Section 2.7.

2.5 Transformation to Hessenberg Form

Idea
We will use Householder transformations, defined for a given v ∈ Rm by I − 2vvT . They can
be understood as the linear operator performing a mirror symmetry with respect to the hyperplane
orthogonal to v. In other words, if x = αv + βw with w ⊥ v, then (I − 2vvT)x = −αv + βw.

44 CHAPTER 2. EIGENVALUE PROBLEMS

Lemma 2.3 – Householder transformations

Let x ∈ Rm, there is v ∈ Rm with ∥v∥2 = 1 such that

(I − 2vv∗)x = (⋆, 0, . . . , 0).

Proof. If x1 = 0, define v = (∥x∥2, x2, . . . , xm). Then

2
vv∗

∥v∥22
x =

2

∥v∥22


∥x∥2
x2
...
xm


m∑
j=2

|xj |2 =
2

2
∑m

j=2 |xj |2


∥x∥2
x2
...
xm


m∑
j=2

|xj |2 =


∥x∥2
x2
...
xm

 .

If x1 ̸= 0, define v = (∥x∥2 + σx1, σx2, . . . , σxm), where σ = x1

|x1| (⇐⇒ x1 = |x1|σ). Then

2
vv∗

∥v∥22
x =

2

∥v∥22


∥x∥2 + σx1

σx2
...

σxm


∥x∥2x1 + σ

m∑
j=1

|xj |2


=
2

2∥x∥22 + 2∥x∥2|x1|


∥x∥2 + σx1

σx2
...

σxm

σ
(
∥x∥2|x1|+ ∥x∥22

)
=


σ∥x∥2 + x1

x2
...
xm

 .

In both cases, we obtain

(I − 2vv∗)x = (⋆, 0, . . . , 0). (2.1)

Theorem 2.7 – Transformation to Hessenberg form

Let A ∈ Rn×n. This matrix can be transformed to Hessenberg form by (n − 2) Householder
transformations:

QTAQ = H =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0
...

. . .
. . .

...

0 · · · 0 ∗ ∗

 ,

where Q := Qn−2 · . . . · Q1, and Qi :=

(
Ii 0
0 In−i − 2wiw

T
i

)
is an Householder transformation.

The matrix H is an upper triangular matrix with entries on the sub-diagonal. If A is symmetric,
H is tridiagonal.

Proof.

1. We choose Q̃1 = I − 2w1w
T
1 (with wT

1 w1 = 1) as an (n − 1) × (n − 1) Householder matrix,
such that

Q̃1

a2,1...
an,1

 =


⋆
0
...
0



2.5. TRANSFORMATION TO HESSENBERG FORM 45

Note that Q̃1 is symmetric. We obtain:

Q1 =

(
1 0

0 Q̃1

)
and A(1) = Q1A1Q

T
1 =


a1,1
⋆
0
...
0

⋆


(
1 0

0 Q̃1

)
=


a1,1
⋆
0
...
0

⋆

 .

2. We choose Q̃2 := I − 2w2w
T
2 an (n− 2)× (n− 2) Householder matrix such that

Q̃2


a
(1)
32
...

a
(1)
n2

 =


⋆
0
...
0

 , and let Q2 =

(
I2 0

0 Q̃2

)
⇒ A(2) = Q2A

(1)QT
2 =



⋆ ⋆
⋆ ⋆
0 ⋆
... 0
...

...
0 0

⋆


.

3. We proceed inductively in this manner and obtain:

QTAQ = H

with Q := Qn−2 · . . . ·Q2 ·Q1 and H an upper triangular matrix with a nonzero subdiagonal.

4. For symmetric matrices, we have

HT = QTATQ = QTAQ = H

Due to H having the all diagonals below the subdiagonal equal to zero, all diagonals of
HT = H above the supdiagonal are zero. Therefore, H is tridiagonal.

Remark 2.11 – Consideration of computational effort

It requires about 5
3n

3 operations for a general A and for symmetric matrices about 2
3n

3 opera-
tions.

Theorem 2.8 – Inheritance of Hessenberg form

Let H = QR be a QR decomposition. We set H̃ := RQ. If H is a Hessenberg matrix, then H̃
is also a Hessenberg matrix. If H is tridiagonal and symmetric, then H̃ is also tridiagonal and
symmetric.

Proof. By a Householder transformation, we obtain (for the QR decomposition):

Q1H =


⋆
0
...
0

⋆

 and Q1 := I − 2w1w
T
1 with w1 =


⋆
⋆
0
...
0

 .

The fact that H is an Hessenberg matrix is used to have only two nonzero components in w1, since
w1 = (⋆, σH2,1, . . . , σHn,1) for some σ ∈ C, |σ| = 1. See the proof of Lemma 2.3 for more details.
Then

RQ1 =

∗ ∗ ∗
0 ∗ ∗
0 0 ∗

∗ ∗ 0
∗ ∗ 0
0 0 In−2

 =

∗ ∗ ∗
∗ ∗ ∗
0 0 ∗



46 CHAPTER 2. EIGENVALUE PROBLEMS

i.e. we obtain an upper triangular matrix with an entry on the subdiagonal. More generally, one
has Q̃k = In−k+1 − 2wkw

T
k where wk = (⋆, ⋆, 0, . . . , 0) ∈ Rn−k+1, and define

Qk =

(
Ik−1 0

0 Q̃k

)
=


Ik−1 0 0 0
0 ⋆ ⋆ 0
0 ⋆ ⋆ 0
0 0 0 In−k−1

 .

Letting Q = Q1 . . . Qn, one obtains the claim. When H (not necessarily Hessenberg) is tridiagonal,
one can show thatQ is in Hessenberg form, and so isRQ. This means that H̃ = RQ is in Hessenberg
form. Note that H̃ = RQ = QTQRQ = QTHQ, and the symmetry of H yields the symmetry of
H̃. A symmetric Hessenberg matrix is tridiagonal, so finally H̃ is symmetric and tridiagonal.

Algorithm 2.10 – Modification of the QR algorithm

1. We perform a pre-transformation, i.e. we bring QTAQ = H0 to Hessenberg form. This
requires O(n3) steps.

2. Apply the classical QR algorithm to H0, i.e. Hk = QkRk. This requires generally O(n2)
operations, and only O(n) operations in the symmetric case.

3. Hk+1 := RkQk, which also requires generally O(n2) operations, and only O(n) operations
in the symmetric case.

2.6 QR Algorithm with Shift

Motivation
We will now always assume that A has only real eigenvalues that are pairwise distinct, i.e. |λ1| >
|λ2| > . . . > |λn|. Moreover, we work on the Hessenberg matrix H = QTAQ. We want to improve
the convergence speed with a shift idea.

Idea (Shift)
We expect after the fourth section that we have the convergence rate

∣∣∣h(k)i+1,i

∣∣∣ = O

(∣∣∣∣λi+1

λi

∣∣∣∣k
)
.

This can be very slow under certain circumstances. We consider the shifted matrix H̃ = H − µI,
which has the eigenvalues λi − µ. Applying the QR algorithm here, we obtain:

∣∣∣h̃(k)i+1,i

∣∣∣ = O

(∣∣∣∣λi+1 − µ

λi − µ

∣∣∣∣k
)
.

This converges very quickly if µ ≈ λi+1.

Convention
We can assume without loss of generality that H is a non-reduced Hessenberg matrix, i.e. for all
i, hi+1,i ̸= 0. If an element were zero, then the matrix would have the form:

H =

(
H1 ⋆
0 H2

)
and then the eigenvalues of H are the eigenvalues of H1 and H2, so the QR algorithm would be
used separately on H1 and H2.

2.6. QR ALGORITHM WITH SHIFT 47

Theorem 2.9

Let H be a non-reduced Hessenberg matrix and µ an eigenvalue of H. Let H −µI = QR be the
QR decomposition. We consider H̃ := RQ+ µI. Then h̃n,n = µ and h̃n,n−1 = 0, i.e. the matrix
decomposes after one QR step.

Proof. We consider H − µI with hi+1,i ̸= 0 for all i. This implies that the first n − 1 columns of
this matrix are linearly independent (because column j has a component at index j+1 which does
not appear in all previous columns). We can write:

QT (H − µI) =

(
Rn−1 ∗
0 rn,n

)
=: R

This is the QR decomposition, which always exists, and Rn−1 must be invertible because it is a
square matrix of linearly independent columns. Because H−µI is singular, we must have rn,n = 0,
so the last row of RQ must also be zero. Thus, we have:

H̃ = RQ+ µI =


∗ ∗ ∗ ∗
. . . ∗ ∗ ∗

. . . ∗ ∗
0 µ



If one does not know the eigenvalue µ, one can use the iterative values h
(k)
n,n as approximations.

Algorithm 2.11 – QR algorithm with shift (for real eigenvalues)

Without loss of generality, letH0 be a non-reduced Hessenberg matrix. We considerHk−h(k)n,nI =

QkRk and Hk+1 := RkQk + h
(k)
n,nI for k = 1, 2, . . . until∣∣∣h(k)n,n−1

∣∣∣ ≤ eps
(∣∣∣h(k)n,n

∣∣∣+ ∣∣∣h(k)n−1,n−1

∣∣∣)
where eps is the machine precision. Then we accept h

(k)
n,n as an eigenvalue. We start again with

the submatrix (h
(k)
ij)n−1

i,j=1 until we finally reach a 1× 1 matrix.

Remark 2.12 – Convergence speed

Let

H −hn,nI =



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

. . . ∗ ∗ ∗
. . . ∗ b

ε 0

⇒ Qn−2 ·Qn−3 · . . . ·Q1 · (H −hn,nI) =


∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗

. . . ∗ ∗ ∗
0 a b

ε 0


where the Qi are defined as in Theorem 2.8, i.e. we have an identity matrix and once a 2 × 2
block on the main diagonal. Moreover, ε and b remain unchanged: the matrix Qi is constructed
to only act on the i-th column of H − hn,nI. In the symmetric case, b = ε. We still need to

compute the QR decomposition of

(
a b
ε 0

)
. It is:

(
a b
ε 0

)
=

1√
a2 + ε2

(
a −ε
ε a

)
︸ ︷︷ ︸

=:Q̃

(√
a2 + ε2 ba√

a2+ε2

0 − bε√
a2+ε2

)
︸ ︷︷ ︸

=:R̃

.

48 CHAPTER 2. EIGENVALUE PROBLEMS

Then

R̃Q̃ =

(∗ ∗
− bε2

a2+ε2 ∗

)

Let Qn−1 :=

(
In−2 0

0 Q̃

)
and R =


∗ ∗ ∗ ∗
0 ∗ ∗ ∗

. . . ∗ ∗
0
0

R̃

, we investigate:

H − hn,nI = Q1 · . . . ·Qn−1︸ ︷︷ ︸
=:Q

R,

and it is

H̃ = RQ+ hn,nI =



∗ ∗ ∗ ∗ ∗
. . . ∗ ∗ ∗ ∗

. . . ∗ ∗ ∗
. . . ∗ ∗

− bε2

a2+ε2 ∗


.

We see that the left element becomes smaller at every iteration, and as soon as this is below the
machine precision, we accept hn,n as an eigenvalue. If ε2 ≪ a2, we obtain quadratic convergence,

i.e. from hn,n−1 = O(ε) it follows that h̃n,n−1 = O(ε2). For symmetric matrices, we even obtain

cubic convergence (because b = ε), i.e. from hn,n−1 = O(ε) it follows that h̃n,n−1 = O(ε3).

Remark 2.13 – Stability consideration of the QR algorithm

We finally obtain that Q̂TAQ̂ = R̂ is Schur’s normal form. The QR algorithm is stable in the
sense of backward analysis, i.e. if R̂ = Q̂T ÂQ̂ is Schur’s normal form of a perturbed matrix,
then:

∥A− Â∥2 ≤ C · eps · ∥A∥2, Q̂T Q̂ = I + F with ∥F∥2 ≤ c · eps.

Proof. Wilkinson, The Algebraic Eigenvalue Problem, 1965.

2.7 Computation of Complex Eigenvalues

Motivation
We now investigate complex, non-real eigenvalues of real matrices A ∈ Rn×n, which occur in pairs
of conjugate complex eigenvalues. Here, we will iteratively compute the real Schur normal form.

Theorem 2.10 – Real Schur normal form

For A ∈ Rn×n, there exists an orthogonal matrix Q ∈ Rn×n such that

QTAQ =


R11 R12 . . . R1m

R22

...
. . .

...
Rmm


where each Rii is either a real number or a real 2×2 matrix with conjugate complex eigenvalues.

Proof. We proceed by induction on the number of pairs of complex conjugate eigenvalues, k. If
k = 0, then A has only real eigenvalues, and we can choose Q = U real in Schur’s normal form, as

2.7. COMPUTATION OF COMPLEX EIGENVALUES 49

in the earlier proof. For the induction step: A has a pair of complex conjugate eigenvalues, i.e. we
have an eigenvalue λ = α + iβ and λ̄ = α − iβ with β ̸= 0. Then there are linearly independent
eigenvectors v = x + iy and v̄ = x − iy (since from Av = λv it follows that Āv̄ = λ̄v̄). It is
Av = λv = (α + iβ)(x + iy) = (αx − βy) + i(αy + βx). On the other hand, Av = A(x + iy). By
coefficient comparison, we obtain:

Ax = (αx− βy), Ay = αy + βx, i.e. A(x, y) = (x, y) ·
(
α β
−β α

)
.

Since v, v̄ are linearly independent, x, y must also be linearly independent, because:

(v, v̄) = (x, y) ·
(
1 1
i −i

)
, det

(
1 1
i −i

)
= −2i ̸= 0.

The vectors x and y span a two-dimensional subspace of Rn, which A maps into itself. Let
(u1, u2) be an ONB of this subspace, which we extend to an ONB (u1, . . . , un) of Rn. We set
U := (u1, . . . , un) ∈ Rn×n, which is an orthogonal matrix. It holds that:

AU = U

(
R11 ⋆

0 Ã

)
where R11 is a 2 × 2 matrix with a pair of complex conjugate eigenvalues. By the induction
hypothesis, there exists Q̃ such that Q̃T ÃQ̃ has the block triangular form, from which the claim
follows immediately. We finally set:

Q :=

(
I2 0

0 Q̃

)
U.

Idea (QR algorithm for complex eigenvalues)
We apply the shifted QR algorithm, with the additional knowledge that there are two complex
conjugate eigenvalues. We consider the following iteration for a complex µk:

1. Hk − µkI = QkRk

2. Hk+1 := RkQk + µkI

3. Hk+1 − µ̄kI = Qk+1Rk+1

4. Hk+2 := Rk+1Qk+1 + µ̄k

Here, Qk is of course not orthogonal but unitary.

Theorem 2.11

If Hk is real, then we can choose the QR decomposition such that Hk+2 is real again.

Proof. We know that:

Hk+1 = RkQk + µkI = Q∗
k(Hk − µkI)Qk + µkI = Q∗

kHkQk

and analogously we obtain:

Hk+2 = Q∗
k+1Hk+1Qk+1 = (QkQk+1)

∗Hk(QkQk+1)

It suffices to show that QkQk+1 is real. We compute with the help of the above calculations:

QkQk+1Rk+1Rk = Qk(Hk+1 − µ̄kI)Rk = Qk(RkQk + µkI − µ̄kI)Rk

= (QkRk)
2 + (µk − µ̄k)QkRk

= (Hk − µkI)
2 + (µk − µ̄k)(Hk − µkI)

= (Hk − µkI)(Hk − µkI + µkI − µ̄kI)

= H2
k − 2Re(µk)Hk + |µk|2I =:Mk

50 CHAPTER 2. EIGENVALUE PROBLEMS

and we see that Mk is real. Since Rk+1Rk is a triangular matrix and QkQk+1 is a unitary matrix,
we have computed the QR decomposition of Mk. We can choose the QR decomposition such that
the diagonal elements of Rk, Rk+1 are real, and the upper triangular property of Rk+1Rk shows
that QkQk+1 is also real.

Remark 2.14 – Uniqueness of the QR decomposition

The QR decomposition is unique up to multiplication by a diagonal matrix.

Remark 2.15 – Computational effort

We want to compute Hk+2 from Hk only with real operations: The computation of the matrix
Mk requires O(n3) operations. We show now that we can compute Hk+2 from Hk in O(n2) real
operations.

Theorem 2.12

Let A ∈ Rn×n and H = QTAQ be a Hessenberg matrix with hi+1,i ̸= 0 for i = 1, . . . , n − 1.
Then Q and H can be determined from the first column of Q.

Proof. Let Q = (q1, . . . , qn). We have AQ = QH, i.e. Aqi =
∑i+1

j=1 qjhji. On the other hand,

QTAQ = H, i.e. qTj Aqi = hji. We take q1 as given. Then we know that h11 = qT1 Aq1. Then q2 is
a multiple of Aq1−h11q1. Thus, we can determine q2 up to the sign uniquely (because ∥q2∥2 = 1).
Thus, we also obtain h12, h21, h22. By induction, the claim follows.

Algorithm 2.12 – Francis’ QR step

1. We compute the first column of Mk: Mke1 = Hk(Hke1)− 2Re(µk)(Hke1)+ |µk|2e1, which
takes O(n2) operations.

2. We compute the Householder matrix Q0 with Q0(Mke1) = αe1, which is a reflection, and
it is:

Q0 =


⋆ ⋆ ⋆
⋆ ⋆ ⋆ 0
⋆ ⋆ ⋆

0 I

 .

The 3 × 3 block comes from Hke1 = α1e1 + α2e2 (because H is Hessenberg), and thus
Hk(Hke1) = α1Hke1 +α2Hke2 = β1e1 + β2e2 + β3e3. So the Householder vector for Mke1
only involves three nonzero components.

3. We transform QT
0HkQ0 into Hessenberg form H̃ in O(n2) operations with Householder

matrices Q̃1, . . . , Q̃n−3. Then we compute QTHkQ = H̃ where Q := Q0Q̃1 · . . . · Q̃n−3. It
holds H̃ = Hk+2.

Proof. When computing the Hessenberg matrix H̃ of Hk, we know that the matrices H̃ and Q are
fully determined from the first column of Q. We focus now on obtaining that first column. Write
Hk = (h1| . . . |hn), we have:

QT
0HkQ0 =


∗ ∗ ∗
∗ ∗ ∗ 0
∗ ∗ ∗

0 I

(h1 h2 h3 . . . hn
)

∗ ∗ ∗
∗ ∗ ∗ 0
∗ ∗ ∗

0 I



=


∗ ∗ ∗
∗ ∗ ∗ 0
∗ ∗ ∗

0 I

(LC(h1, h2, h3) LC(h1, h2, h3) LC(h1, h2, h3) h4 . . . hn
)
,

2.8. COMPUTATION OF SINGULAR VALUES 51

where LC(v1, . . . , vk) denotes a linear combination of vectors v1, . . . , vk, and the coefficients of the
linear combination may be different between all occurences of the notations “LC”. Thus,

QT
0HkQ0 =


∗ ∗ ∗
∗ ∗ ∗ 0
∗ ∗ ∗

0 I





∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
. . .

0 0 0
. . .

. . .
...

...
...

. . .
. . .

. . .

0 0 0 . . . 0 ∗ ∗


=



∗ ∗ ∗
∗ ∗ ∗
⋆ ∗ ∗ ∗

⋆ ⋆ ∗
. . .

0 0 0
. . .

. . .
...

...
...

. . .
. . .

. . .

0 0 0 . . . 0 ∗ ∗


We want to eliminate the ⋆-entries in the first column, which we can do using Householder matrices
of the form

Q̃j =


Ij 0 0

⋆ ⋆ ⋆
0 ⋆ ⋆ ⋆ 0

⋆ ⋆ ⋆
0 0 In−j−3

 , j = 1, . . . , n− 3.

Then Q̃ie1 = e1 for i = 1, . . . , n− 3, so Qe1 = Q0e1. Since Q0 (Mke1) = αe1 and Q−1
0 = QT

0 = Q0,
Q0e1 is a multiple of Mke1. On the other hand, we knew that Mke1 = (QkQk+1) (RkRk+1) e1 =
(QkQk+1)βe1. Then QkQk+1e1 is also a multiple ofMke1. We deduce that QkQk+1e1 is a multiple
of Q0e1 = Qe1, and since the columns of QkQk+1 and Q are all normalized we get QkQk+1e1 =
±Q0e1 = Qe1. With a suitable choice of signs, QkQk+1e1 = Qe1.

Now, we have
H̃ = QTHkQ and Hk+2 = (QkQk+1)

T
Hk (QkQk+1) .

We know that Hk is a Hessenberg matrix, so Hk+1 and a fortiori Hk+2 as well. Hence, the two
equations above are two reductions of Hk to Hessenberg form, and the first column of Q and
QkQk+1 agree. Because the Hessenberg reduction is completely determined by the first column of
the orthogonal matrix, both reductions are the same, hence

Q = QkQk+1, H̃ = QTHkQ = Hk+2.

Remark 2.16 – Termination of iteration

We terminate the iteration if for ℓ = n (real eigenvalues) or ℓ = n − 1 (complex eigenvalues) it
holds: ∣∣∣h(k)ℓ,ℓ−1

∣∣∣ ≤ eps
(∣∣∣h(k)ℓ−1,ℓ−1

∣∣∣+ ∣∣∣h(k)ℓ,ℓ

∣∣∣)
1. If ℓ = n, we accept h

(k)
n,n as the eigenvalue and restart with

(
h
(k)
ij

)n−1

i,j=1
.

2. If ℓ = n− 1, we accept the eigenvalues of the lower right 2× 2 block of Hk as eigenvalues

of A and restart with
(
h
(k)
ij

)n−2

i,j=1
.

2.8 Computation of Singular Values

Theorem 2.13 – About singular values

For A ∈ Rm×n, there exist orthogonal matrices U ∈ Rm×m and V ∈ Rn×n such that

A = UΣV T

with Σ = diag(σ1, . . . , σp) ∈ Rm×n and σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0, where p = min{m,n}. The σj
are called singular values of A, which are uniquely determined.

52 CHAPTER 2. EIGENVALUE PROBLEMS

Proof. Let x ∈ Rn, y ∈ Rm with ∥x∥2 = ∥y∥2 = 1. Moreover, let Ax = σy with

σ = ∥A∥2 = max
∥v∥=1

∥Av∥2.

Thus, x can be chosen such that ∥Ax∥ = ∥A∥. Let V1 be an orthogonal n × n matrix with x in
the first column (i.e. we extend x to an ONB of Rn) and U1 an orthogonal m×m matrix with y
in the first column. Then

A1 := UT
1 AV1 =


σ
0
...
0

⋆

 =

(
σ wT

0 Ã1

)
,

where w ∈ Rn−1 is a suitable vector and Ã1 ∈ R(m−1)×(n−1) is a suitable matrix. We consider∥∥∥∥A1

(
σ

w

)∥∥∥∥
2

=

∥∥∥∥(σ2 + wTw

⋆

)∥∥∥∥
2

≥
√
σ2 + wTw.

On the other hand,

∥A1∥2 = max
∥v∥2=1

∥A1v∥2 = max
∥v∥2=1

∥UT
1 AV1v∥2 = max

∥u∥2=1
∥UT

1 Au∥2 = max
∥z∥2=1

∥Az∥2 = ∥A∥2 = σ.

We deduce w = 0, and thus A1 =

(
σ 0

0 Ã1

)
. By induction on Ã1, the claim follows.

Remark 2.17

Assume the same notation as in the above theorem and let U = (u1, . . . , um) and V =
(v1, . . . , vn). Furthermore, let σ1 ≥ . . . ≥ σr > σr+1 = . . . = σp = 0. Then

1. rankA = r

2. KerA = Span{vr+1, . . . , vn} (and vr+1, . . . , vn is an ONB of KerA)

3. ImageA = Span{u1, . . . , ur} (and u1, . . . , ur is an ONB of ImageA)

4. ∥A∥2 = σ1

5. For the Frobenius norm ∥ · ∥F , we have:

∥A∥2F :=
∑
i,j

a2ij =

r∑
k=1

σ2
k.

Remark 2.18

It holds that

A = UΣV T =

r∑
i=1

σi uiv
T
i︸︷︷︸

rank=1

.

If the rank of A is small, then much of the information about it can be stored in the vectors ui
and vi. The best approximation of A of rank k ≤ r is:

A ≈
k∑

i=1

σiuiv
T
i .

This is called the “low-rank approximation of A”, which is useful to approximate, e.g., large
N × N matrices by means of r vectors of size N . This information is needed, for example, in
data compression, physics, natural sciences (e.g. geoscience, astrophysics). . .

2.8. COMPUTATION OF SINGULAR VALUES 53

Remark 2.19 – Further application

In search engines, one often uses the method of ”latent semantic indexing,” which is stored in a
so-called term-document matrix, where for each search term and each document, it is recorded
how often the term appears there. Thus, one replaces the term-document matrix with a low-rank
approximation.

Remark 2.20 – Observation on the computation of singular values

One could apply the QR algorithm directly to ATA (for n ≤ m) or to AAT (for m ≤ n). The
product formation is computationally expensive and rounding errors occur. Therefore, we now
consider a better algorithm: If P and Q are orthogonal, then A and PAQ have the same singular
values, since:

A = UΣV T ⇐⇒ PAQ = PU︸︷︷︸
P̃

ΣV TQ︸ ︷︷ ︸
Q̃

.

Note that P̃ and Q̃ are orthogonal matrices as products of orthogonal matrices. The following
auxiliary theorem shows that we can transform any matrix A with such transformations P and
Q into bidiagonal form, and thus the problem reduces to computing the singular values of a
bidiagonal matrix.

Theorem 2.14

For A ∈ Rm×n (with m ≥ n without loss of generality), there exist orthogonal matrices P,Q
with

PAQ =

(
B

0

)
, B =


. . .

. . . 0

0
. . .

. . .

0 0
. . .


i.e. B is an n× n bidiagonal matrix.

Proof. We use Pi and Qi as Householder transformations. By multiplying from the left with P1,
we obtain:

P1A =


⋆
0
... ⋆
0



Multiplying from the right withQ1 =

(
1 0

0 Q̃1

)
, where Q̃1 ∈ R(n−1)×(n−1) is a Householder matrix,

gives:

P1AQ1 =


⋆ ⋆ 0 . . . 0
0
... Â
0


By induction on a smaller matrix Â, the claim follows.

Remark 2.21

We chase the “bad” elements on and below the subdiagonal until they “fall” out. This method
is called ”chasing” in the literature.

54 CHAPTER 2. EIGENVALUE PROBLEMS

Remark 2.22 – Computation of Singular Values of a Tridiagonal Matrix

We have a matrix BTB =: H which is tridiagonal with real nonnegative eigenvalues, and consider
a step of the QR algorithm for µ := hn,n:

M := H − µI = QR.

Then H̃ = RQ+µI = QT (H −µI)Q+µI = QTHQ. We want to compute the eigenvalues of H
without explicitly computing the matrix H or the matrixM . According to Theorem 2.12, H̃ and
Q are uniquely determined by the first column of Q. ThenM = QR and QT = Qn−1 · . . . ·Q2 ·Q1

as a product of Householder transformations with

Qj =


Ij−1

∗ ∗
∗ ∗

In−j−1

 , j = 1, . . . , n− 1.

The first column of Q is Qe1 = Q1e1, hence Me1 = QRe1 = αQe1 = αQ1e1. This means that
Q1e1 is a multiple of

Me1 =


h1,1 − µ
h21
0
...
0

 .

Then

Q1e1 = ± Me1
∥Me1∥2

=


c
s
0
...
0

 with c2 + s2 = 1, thus: Q1 =

 c s
s −c 0

0 In−2

 .

We now transform QT
1HQ1 to tridiagonal form using Theorem 2.12: since H is symmetric,

QT
1HQ1 is also symmetric, and we are looking for Q̃ such that

H̃ = Q̃T (QT
1HQ1)Q̃ = (Q1Q̃)TH(Q1Q̃), Q̃ =

(
I2 0
0 Q̌

)
, Q̌T Q̌ = Q̌Q̌T = I,

where H̃ is Hessenberg symmetric, hence tridiagonal. We have Q1Q̃e1 = Q1e1 = Qe1. Thus,
Q1Q̃ = Q, since the first column matches. Since H = BTB, H̃ = QTBTBQ = QTBTPTPBQ
is tridiagonal if PBQ is bidiagonal. We transform BQ1 to bidiagonal form using Theorem 2.14.

Algorithm 2.13 – Golub, Kahan, 1965

Let A ∈ Rm×n with m ≥ n. Then we perform the following algorithm:

1. We transform A with Householder matrices to bidiagonal form:

PAQ =

(
B

0

)
, B =


. . .

. . . 0

0
. . .

. . .

0 0
. . .

 , β = ∥B∥F :=

√√√√ n∑
i,j=1

b2ij .

2. We use Remark 2.22 to find the singular values of B, which are the square root of the

2.8. COMPUTATION OF SINGULAR VALUES 55

eigenvalues of H = BTB. We compute

Q1 =

⋆ ⋆
⋆ ⋆

0

0 I


as in Remark 2.22. We then transform BQ1 by “chasing” to bidiagonal form B̃. We repeat
(with B̃ instead of B) until |bn−1,n| ≤ β · eps, .i.e. until the off-diagonal term on row n− 1
is “small enough to be considered zero”. When this is done, hn−1,n ≈ 0, hence hn,n is a
good approximation to the eigenvalue of H, which is the square of a singular value of B
(which is itself a singular value of A).

3. We reduce the dimension by one and repeat with (bij)
n−1
i,j=1, until we finally reach (almost-)

diagonal form.

Remark 2.23

Due to equivalence to the QR algorithm for H = BTB, we obtain cubic convergence, since this
matrix is symmetric and tridiagonal.

56 CHAPTER 2. EIGENVALUE PROBLEMS

Chapter 3

Conjugate Gradient Methods

Motivation
The conjugate gradient method can be applied to minimize functions and solve large linear systems
(derived from symmetric positive definite matrices).

• Minimization
Let f : Rn ⊃ D → R. We want to determine the minimum of f , i.e., f ′(x) = 0. This can
be computed via Newton-type methods (cf. Numerics I). However, these require knowledge
of the Hessian matrix, which is computationally expensive. We seek a method that does not
require the second derivative. The conjugate gradient method fulfills this requirement.

• Solution of a Linear System
Let f be quadratic, i.e., f(x) = 1

2x
⊤Ax − x⊤b with A ∈ Rn×n symmetric positive definite

and b ∈ Rn. Then: f ′(x) = 0 ⇐⇒ Ax− b = 0 ⇐⇒ Ax = b.
The conjugate gradient method is iterative, requires no matrix decomposition, not even the
matrix A itself, but only the mapping x 7→ Ax.
In many applications (such as solving discretizations of finite element methods), very large
and sparsely populated matrices often arise. For these, it is not suitable to solve the system
of linear equations using decomposition, as the computational effort would be too high and
nonzero elements would be filled in.

3.1 One-Dimensional Minimization

Algorithm 3.1 – Golden Section Search (Jack Kiefer, 1953)

Let f : R → R. We seek the minimum in [a, b]. Choose v, w ∈ (a, b) such that:

v − a

w − a
=
w − a

b− a
,

b− w

b− v
=
b− v

b− a

By solving the equations, we obtain:

v = a+
3−

√
5

2
(b− a), w = a+

√
5− 1

2
(b− a).

This ratio is precisely the golden ratio. We now proceed:

1. If f(v) < f(w), then the new search interval is [a,w]. We can compute that v should
replace w, and we only need one additional function evaluation.

2. If f(v) > f(w), then the new search interval is [v, b], and w takes the role of v.

We repeat this interval reduction until b− a ≤ tol, where a and b are the interval boundaries in
the k-th step.

57

58 CHAPTER 3. CONJUGATE GRADIENT METHODS

Algorithm 3.2 – Quadratic Interpolation

We fit a parabola through three points (x0, f(x0)), (x1, f(x1)), and (x2, f(x2)) with x0 < x1 < x2
and determine its minimum x∗. We then choose the new interval as either [x0, x1] or [x1, x2],
specifically the one that contains x∗. For the new interval, we proceed iteratively in the same
manner and repeat the iteration until the interval length is smaller than a given tolerance tol.

3.2 Steepest Descent Method

Algorithm 3.3 – Gradient Method

e have a function f : Rn → R with f(x∗) = min, and we replace the n-dimensional minimization
problem with a sequence of one-dimensional minimization problems.
Starting from an initial point x0 ∈ Rn, we search for a direction that leads us towards x∗. We
choose the search direction 0 ̸= d ∈ Rn such that it locally represents the steepest descent. We
then minimize f(x0+αd) with respect to α (which can be done using one-dimensional methods)
and set x1 := x0 + α∗d. We iterate this process and obtain convergence xk → x∗.

Example 3.1

Let f(x) = 1
2x

⊤Ax − x⊤b with A symmetric and positive definite. The minimum of f(x + αd)
is attained at

α = −d
⊤(Ax− b)

d⊤Ad
,

which can be easily shown. We note that the gradient of f(x) is given by ∇f(x) = Ax− b.

Remark 3.1 – Choice of Search Direction

Using the Taylor expansion, we obtain:

f(x+ αd) = f(x) + αf ′(x) · d+O(α2).

Locally, the steepest descent direction is given by the negative gradient of f , i.e.,

d = −∇f(x).

Algorithm 1 Steepest Descent Method

Require: Symmetric positive definite matrix A ∈ Rn×n, right-hand side b ∈ Rn, initial guess x0,
tolerance ε > 0

1: Compute r0 = b−Ax0
2: for k = 0, 1, 2, . . . until convergence do

3: αk =
r⊤k rk
r⊤k Ark

4: xk+1 = xk + αkrk
5: rk+1 = rk − αkArk
6: if ∥rk+1∥ < ε then
7: break
8: end if
9: end for

Remark 3.2

Locally, this method is naturally optimal. However, globally, many iterations are needed to reach
the solution. Therefore, we consider another method.

3.3. RITZ-GALERKIN METHOD 59

Remark 3.3 – Conjugate Gradients

Let r := b − Ax. We consider the vector space: Vk := span{r,Ar, . . . , Ak−1r} and minimize at
step k, starting from an initial vector x0: f(xk) = mind∈Vk

f(x0 + d).

Outlook We will see that the iterates xk can be computed recursively via one-dimensional mini-
mizations.

3.3 Ritz-Galerkin Method

Motivation (Problem Statement)
Let f : V → R be a function on a real (possibly infinite-dimensional) vector space V , given by:

f(v) =
1

2
a(v, v)− b(v),

where a : V × V → R is a symmetric, positive definite bilinear form, and b : V → R is a linear
form. We aim to determine the minimum of f .

Remark 3.4

If V = Rn, then a(v, v) = 1
2v

⊤Av, b(v) = v⊤b, with A symmetric and positive definite, and
b ∈ Rn. In this case, we know that minimizing f(v) = min ⇐⇒ Av = b.

Theorem 3.1 – Characterization of Minimization

For u ∈ V , the following holds:

f(u) = min
v∈V

f(v) ⇐⇒ a(u, v) = b(v) ∀v ∈ V.

Proof. We set v := u+ λw for λ ∈ R and w ∈ V . Then:

f(u+ λw)− f(u) =
1

2
(a(u+ λw, u+ λw)− a(u, u))− (b(u+ λw)− b(u)) .

Using the bilinearity of a and linearity of b, we have:

f(u+ λw)− f(u) =
1

2

(
a(u, u) + 2λa(u,w) + λ2a(w,w)− a(u, u)

)
− (b(u) + λb(w)− b(u))

= λ (a(u,w)− b(w)) +
1

2
λ2a(w,w).

Since f(u) ≤ f(u+λw) for all λ ∈ R and w ∈ V , this is equivalent to a(u,w) = b(w) ∀w ∈ V.

Idea (Approximate Minimization)
We choose a k-dimensional subspace Vk ⊂ V and determine the minimum of f in this subspace,
i.e., find uk ∈ Vk such that:

f(uk) = min
vk∈Vk

f(vk).

This approach is known as the Ritz method.

By the previous theorem, this is equivalent to finding uk ∈ Vk satisfying:

a(uk, vk) = b(vk) ∀vk ∈ Vk.

This is called the Galerkin method.

60 CHAPTER 3. CONJUGATE GRADIENT METHODS

Remark 3.5 – Applications

These approaches are very important in the following examples:

1. To solve Ax = b for A a symmetric, positive definite matrix and A being finite-
dimensional and sparsely populated. For the approximation space, we often take Vk :=
⟨g,Ag, . . . , Ak−1g⟩. We will discuss this space in the next section when we talk about the
conjugate gradient method. This approach works particularly well when g is an eigenvector
of A.

2. Finite elements, which is an important method for solving PDEs. This is discussed in
numerical methods for partial differential equations.

Theorem 3.2 – Existence and Uniqueness of the Minimization in Subspace

There exists exactly one solution uk ∈ Vk to the minimization problem

f(uk) = min
vk∈Vk

f(vk)

Proof. Let (φ1, . . . , φk) be a basis of Vk. We now seek

uk =

k∑
i=1

µiφi ∈ Vk

such that a(uk, vk) = b(vk) for all vk that can be represented as vk =
∑k

j=1 νjφj , i.e.

k∑
i=1

k∑
j=1

µiνja(φi, φj) =

k∑
j=1

νjb(φj) ∀ν := (νj) ∈ Rk.

If we set A := a(φi, φj), µ := (µi), and ℓ := b(φj), then in this notation, we must solve the
following problem:

ν⊤Aµ = ν⊤ℓ ∀ν ∈ Rk.

Since this must hold for all ν, it must particularly hold for ν = (ei), and we obtain the new system
of linear equations Aµ = ℓ.

We now compute that A is positive definite:

ν⊤Aν =

k∑
i,j=1

νiνja(φi, φj) = a

 k∑
i=1

νiφi,

k∑
j=1

νjφj

 > 0

if
∑k

i=1 νiφi ̸= 0, i.e. ν = (νi)
k
i=1 ̸= 0, since φ is a basis.

Thus, A is positive definite (and clearly symmetric) and therefore invertible. This proves the
claim.

Theorem 3.3 – Cea’s Lemma

If u∗ ∈ V is a solution to the minimization problem in V and uk ∈ Vk is a solution in the
subspace Vk, then it holds in the energy norm ∥vk∥a :=

√
a(vk, vk) that

∥uk − u∗∥a = min
vk∈Vk

∥vk − u∗∥a,

i.e., uk is the best possible approximation to u in this sense.

3.4. THE CONJUGATE GRADIENT METHOD 61

Remark 3.6

The Ritz–Galerkin approximation thus has, among all elements of the approximation space Vk,
the smallest distance (with respect to the energy norm) to the exact solution.

Proof. Since Vk is a subspace of V , it follows for all vk ∈ V that a(u∗, vk) = b(vk) and a(uk, vk) =
b(vk). Subtracting these two equations from each other and using bilinearity, we get:

a(uk − u∗, vk) = 0 ∀vk ∈ Vk.

Since we are allowed to replace vk by uk − vk ∈ Vk and insert a zero, it follows that:

a(uk − u∗, uk − u∗ + u∗ − vk) = 0 ⇐⇒ a(uk − u∗, uk − u∗) = a(uk − u∗, vk − u∗) ∀vk ∈ Vk.

Using the definition of the energy norm, the above equation, and applying the Cauchy-Schwarz
inequality, we obtain:

∥uk − u∗∥2a = a(uk − u∗, uk − u∗) ≤ ∥uk − u∗∥a∥vk − u∗∥a ∀vk ∈ Vk.

Thus, it holds that:

∥uk − u∗∥a ≤ ∥vk − u∗∥a ∀vk ∈ Vk.

3.4 The Conjugate Gradient Method

Motivation
We assume in this chapter that we want to solve a system of linear equations Ax = b, where
A ∈ Rn×n is symmetric and positive definite, and b ∈ Rn. Typically, n is very large, and A is
sparse, as is the case, for example, when solving partial differential equations.
We already know that this is equivalent to minimizing f(x) = 1

2x
⊤Ax− x⊤b.

The conjugate gradient method is often referred to as the cg-method (conjugate gradient method)
in the literature.

Historical Note. This method was introduced by Hestenes and Stiefel in 1952.

Definition 3.1 – Krylov Subspace

The vector space Kk(A, r)

Kk(A, r) := span{r,Ar, . . . , Ak−1r}

is called the k-th Krylov subspace.

Remark 3.7

From the gradient method (see Remark 3.2), we already know that the vector space Vk

Vk := span{r0, Ar0, . . . , Ak−1r0} with r0 = −g0 := b−Ax0 = −∇f(x0)

for a starting vector x0 is a k-th Krylov subspace.

Idea (Ritz-Galerkin Approach)
We now apply the Ritz-Galerkin approach to the approximation space Vk, i.e., we seek an xk ∈
x0 + Vk such that

f(xk) = min
vk∈Vk

f(x0 + vk).

62 CHAPTER 3. CONJUGATE GRADIENT METHODS

Remark 3.8

Since this space is generally k-dimensional, it is difficult to calculate such minima. However, we
will show in the following that it is sufficient to solve k one-dimensional problems recursively in
order to reach the minimum in Vk.
For the derivation, we assume, without loss of generality, that x0 = 0 (otherwise, consider
y = x− x0; then the problem would be to solve Ay = b−Ax0 for the starting value y0 = 0).

Definition 3.2 – Inner Product Induced by A

We define the inner product induced by A as ⟨u, v⟩A := u⊤Av = ⟨Au, v⟩, where ⟨·, ·⟩ denotes the
Euclidean inner product.

Idea (Decomposition of the Krylov Subspace)
We decompose the Krylov subspace in the following manner:

Vk+1 = Vk ⊕ V ⊥
k

with V ⊥
k = {w ∈ Vk+1 | w⊤Av = 0 ∀v ∈ Vk}, which is often referred to in the literature as the

A-orthogonal complement of Vk in Vk+1, and by construction, it is orthogonal with respect to the
inner product induced by A.

Construction (Derivation of the Algorithm)
It is clear that dimV ⊥

k ≤ 1.
Thus, we can uniquely write xk+1 = u + w with u ∈ Vk and w ∈ V ⊥

k . Therefore, xk+1 is
determined by the conditions that

xk+1 ∈ Vk+1, f(xk+1) = min
vk+1∈Vk+1

f(vk+1),

which is equivalent to finding a vk+1 ∈ Vk+1 such that

⟨Axk+1, vk+1⟩ = ⟨b, vk+1⟩ ∀vk+1 ∈ Vk+1.

Since Vk ⊆ Vk+1, it follows that

⟨Axk+1, vk⟩ = ⟨b, vk⟩ ∀vk ∈ Vk.

However, the left-hand side simplifies due to orthogonality:

⟨Axk+1, vk⟩ = ⟨Au, vk⟩+ ⟨Aw, vk⟩︸ ︷︷ ︸
=0

.

On the other hand, xk ∈ Vk is uniquely determined by

⟨Axk, vk⟩ = ⟨b, vk⟩ ∀vk ∈ Vk.

Thus, u = xk, and we obtain that xk+1 = xk + w with w ∈ V ⊥
k , or equivalently, for dk (e.g., a

basis of V ⊥
k) with V ⊥

k = Rdk, we have for αk ∈ R

xk+1 = xk + αkdk.

Thus, xk+1 is the solution to a one-dimensional minimization problem:

f(xk+1) = min
αk∈R

f(xk + αkdk).

We need to find the minimum of a quadratic function, for which we already know the optimal
αk from Chapter 2, namely

αk =
⟨dk, b−Axk⟩
⟨Adk, dk⟩

=
⟨dk, rk⟩
⟨Adk, dk⟩

.

3.4. THE CONJUGATE GRADIENT METHOD 63

Construction (Determination of the Search Direction)
We want to determine the search direction dk as a basis vector of V ⊥

k . To do this, we consider
different cases:

1. If Vk+1 = Vk, then V ⊥
k = 0, and thus dk = 0. In this case, for xk ∈ Vk, we also have

Axk ∈ Vk+1 = Vk. But it holds that:

⟨Axk, vk⟩ = ⟨b, vk⟩ ∀vk ∈ Vk, ⟨Axk − b, vk⟩ = 0 ∀vk ∈ Vk.

Since Axk − b ∈ Vk, the only solution to the zero vector in the first component of the scalar
product is Axk = b. Therefore, xk is the solution to the linear system.

2. Let dimV ⊥
k = 1. Then rk = b − Axk ̸= 0, so rk /∈ Vk, but rk ∈ Vk+1. We now decompose

rk = ck + dk, where ck ∈ Vk and dk ∈ V ⊥
k , and in particular, dk ̸= 0. Thus, ck is the

A-orthogonal projection of rk onto Vk with respect to the inner product induced by A.

Let {d0, d1, . . . , dk−1} be an orthonormal basis (with respect to A) of Vk, i.e., ⟨Adi, dj⟩ = 0
for i ̸= j. By the Gram-Schmidt process, we obtain for ck:

ck =

k−1∑
i=0

⟨Adi, rk⟩
⟨Adi, di⟩

di.

Since Adj ∈ Vk for j ≤ k − 2, due to the definition of xk:

⟨rk, Adj⟩ = ⟨b−Axk, Adj⟩ = 0.

This greatly simplifies the sum, and we ultimately obtain:

dk = rk − ck = rk − ⟨Adk−1, rk⟩
⟨Adk−1, dk−1⟩

dk−1.

Remark 3.9 – Computational Cost of the Iteration

We want to compute rk+1 = Axk+1 − b. However, the cost of matrix multiplication is too high.
Based on the definition of xk+1, we have:

rk+1 = b−A(xk + αkdk) = (b−Axk)− αkAdk = rk − αkAdk.

The product Adk is needed anyway in the next step for calculating the new search direction
dk+1, so this calculation is quite optimal in terms of computational cost.

Algorithm 3.4 – Conjugate Gradient Method

Let x0 ∈ Rn be an arbitrary initial vector. Then, d0 = r0 = b − Ax0. For k = 0, 1, 2, . . . (until
∥b−Axk∥ ≤ tol · ∥b∥), the following recursion is performed:

xk+1 = xk + αkdk,

rk+1 = rk − αkAdk,

dk+1 = rk+1 + βkdk,

where the coefficients are given by:

αk =
⟨dk, rk⟩
⟨Adk, dk⟩

,

βk = −⟨Adk, rk+1⟩
⟨Adk, dk⟩

.

By construction, we have:
f(xk) = min

vk∈Vk

f(x0 + vk).

64 CHAPTER 3. CONJUGATE GRADIENT METHODS

Remark 3.10 – Computational Cost

We require only a single matrix multiplication and three scalar products per step.

Remark 3.11

We will show in an exercise that we can write:

αk =
⟨rk, rk⟩
⟨Adk, dk⟩

, βk =
⟨rk+1, rk+1⟩

⟨rk, rk⟩
.

Thus, we only need two distinct scalar products per step.

Algorithm 2 Conjugate Gradient Method

Require: A ∈ Rn×n SPD, b ∈ Rn, initial guess x0, tolerance ε > 0
1: r0 = b−Ax0
2: d0 = r0
3: for k = 0, 1, 2, . . . do

4: αk =
r⊤k rk
d⊤
k Adk

5: xk+1 = xk + αkdk
6: rk+1 = rk − αkAdk
7: if ∥rk+1∥ < ε then
8: break
9: end if

10: βk =
r⊤k+1rk+1

r⊤k rk

11: dk+1 = rk+1 + βkdk
12: end for

3.5 Error Analysis of the CG Method

Theorem 3.4 – Finite Termination of CG Method

After at most n steps of the CG method, we obtain the exact solution to the linear system

Ax∗ = b, that is, ∃k ≤ n such that xk = x∗.

Proof. It is V1 ⊆ V2 ⊆ · · · ⊆ Rn, so there exists a k ≤ n with Vk+1 = Vk. Hence, xk is exact.

Remark 3.12

For practical purposes, this theorem is uninteresting since we usually use this method for very
large n. Moreover, we only require a very good approximation to the solution, for example,
∥xk − x∗∥ ≤ tol · ∥x0 − x∗∥ for k ≤ n. Furthermore, rounding errors can worsen the result at
each step.

Theorem 3.5 – Error Estimate for the CG Method

For all polynomials qk of degree deg qk ≤ k with qk(0) = 1, it holds that:

∥xk − x∗∥A ≤ max
λ∈EV(A)

|qk(λ)| · ∥x0 − x∗∥A,

where x∗ is the exact solution.

3.5. ERROR ANALYSIS OF THE CG METHOD 65

Remark 3.13 – Observation

Let A be a matrix of any dimension with exactly k distinct eigenvalues. Then, the CG method
will provide the exact solution after at most k steps. We consider the polynomial that has the
eigenvalues as roots. Moreover, the CG method converges quickly when the eigenvalues are
clustered together.

Proof. Without loss of generality, assume x0 = 0 (otherwise, we consider y = x − x0, and for
Ay = b−Ax0, we would have y0 = 0).

1. From the Cea’s theorem, we know that

∥xk − x∗∥A = min
vk∈Vk

∥vk − x∗∥A.

For a Vk ∋ vk = pk−1(A)b and deg pk−1 ≤ k − 1, it follows from Ax∗ = b:

x∗ − vk = (I − pk−1(A)A)︸ ︷︷ ︸
=:qk(A)

x∗,

where qk is a polynomial of degree deg qk ≤ k with qk(0) = 1. Thus, we get:

∥xk − x∗∥A = min
deg qk≤k,qk(0)=1

∥qk(A)x∗∥A.

2. Since A is symmetric and positive definite, we can diagonalize A using an orthogonal matrix,
A = QΛQ⊤, where Q is orthogonal and Λ = diag(λ1, . . . , λn). Due to positive definiteness,
λi > 0. Then, we compute:

∥qk(A)x∗∥2A = ⟨Aqk(A)x∗, qk(A)x∗⟩ = ⟨QΛQ⊤Qqk(Λ)Q
⊤x∗, Qqk(Λ)Q

⊤x∗⟩,

= ⟨Λqk(Λ)Q⊤x∗, qk(Λ)Q
⊤x∗⟩ = ⟨Λ 1

2Λ
1
2 qk(Λ)Q

⊤x∗, qk(Λ)Q
⊤x∗⟩

= ⟨qk(Λ)Λ
1
2Q⊤x∗, qk(Λ)Λ

1
2Q⊤x∗⟩ = ∥qk(Λ)Λ

1
2Q⊤x∗∥22

≤ ∥qk(Λ)∥22︸ ︷︷ ︸
=(maxi=1··· ,n|ak(λi)|)

2

∥Λ 1
2Q⊤x∗∥22

We now need to find a clever expression for ∥Λ 1
2Q⊤x∗∥22:

∥Λ 1
2Q⊤x∗∥22 =

〈
Λ

1
2Q⊤x∗,Λ

1
2Q⊤x∗

〉
= ⟨ΛQ⊤x∗, Q⊤x∗⟩ = ⟨QΛQ⊤x∗, x∗⟩ = ⟨Ax∗, x∗⟩ = ∥x∗∥2A

Thus, we obtain:

∥xk − x∗∥A ≤ ∥qk(A)x∗∥A ≤ max
i=1,··· ,n

|qk(λi)|∥x∗∥A.

Remark 3.14 – Recap

1. For the condition number with respect to the Euclidean norm for a symmetric positive

matrix, we have: cond2(A) =
λmax(A)
λmin(A) .

2. Among all polynomials pk of degree at most k satisfying pk(t0) = 1, the Chebyshev poly-
nomial Tk(t)/Tk(t0) attains the smallest possible maximum absolute value on the interval
[−1, 1] (see Exercise 7).

66 CHAPTER 3. CONJUGATE GRADIENT METHODS

Theorem 3.6 – Condition Number Dependent Error Estimate

For the condition number κ = cond2(A), it holds that:

∥xk − x∗∥A ≤ 2 ·
(√

κ− 1√
κ+ 1

)k

· ∥x0 − x∗∥A.

Proof. Let all eigenvalues of A be in [λmin, λmax] with 0 < λmin < λmax and then κ = λmax

λmin
. From

the previous theorem, for all polynomials qk of degree deg qk ≤ k and qk(0) = 1, we have:

∥xk − x∥A ≤ max
λ∈EV(A)

|qk(λ)| · ∥x0 − x∥A.

We now transform [λmin, λmax] to [−1, 1] by the mapping:

λ 7→ t =
2λ− λmin − λmax

λmax − λmin
, in particular 0 7→ −λmax + λmin

λmax − λmin
= −κ+ 1

κ− 1
=: t0 < −1.

We then get the following estimate:

∥xk − x∥A ≤ max
t∈[−1,1]

|pk(t)| · ∥x0 − x∥A,

for all polynomials pk(t) := qk(λ) with deg pk ≤ k and pk(t0) = 1. From Numerics I, we know that
the right-hand side of the estimate is minimized for the Chebyshev polynomial Tk(t)/Tk(t0), and
thus we have:

∥xk − x∥A ≤ 1

|Tk(t0)|
· ∥x0 − x∥A.

We now use that for a Chebyshev polynomial, the following holds:

Tk(t) =
1

2

((
t−

√
t2 − 1

)k
+
(
t+

√
t2 − 1

)k)
⇒ |Tk(t0)| = Tk(|t0|) ≥

1

2

(
|t0|+

√
t20 − 1

)k

.

We calculate as follows:

|t0|+
√
t20 − 1 =

κ+ 1

κ− 1
+

√
κ2 + 2κ+ 1− (κ2 − 2κ+ 1)

(κ− 1)2
=
κ+ 1 + 2

√
κ

κ− 1

=
(
√
κ+ 1)2

(
√
κ+ 1)(

√
κ− 1)

=

√
κ+ 1√
κ− 1

Finally, we get:

|Tk(t0)| ≥
1

2

(√
κ+ 1√
κ− 1

)k

, and thus ∥xk − x∥A ≤ 2

(√
κ+ 1√
κ− 1

)k

∥x0 − x∥A.

Remark 3.15

1. For the steepest descent method, the corresponding statement is:

∥xk − x∥A ≤
(
κ− 1

κ+ 1

)k

∥x0 − x∥A.

For a large condition number, this expression is much closer to one than the first expression,
meaning that we have very slow convergence.

2. Rapid error reduction in the CG method occurs if:

a) the condition is small, or

b) the eigenvalues of A are clustered in a few groups.

3.6. PRECONDITIONED CG METHOD 67

3.6 Preconditioned CG Method

Idea
We now want to solve Ax = b for a symmetric and positive definite matrix A. Typically, A is very
large and sparsely populated.

If B is symmetric and positive definite, we set B ≈ A−1 such that x 7→ Bx is easy to compute.
This gives us an equivalent linear system BAx = Bb. We now require that cond2(BA) ≪ cond2(A)
so that the CG method converges faster.

Remark 3.16 – Choice of Preconditioner

We have the problem of finding B that satisfies these requirements. Therefore, we perform an
incomplete Cholesky decomposition. For k = 1, . . . , n, we compute:

ℓ̃kk =

√√√√akk −
k−1∑
j=1

ℓ̃2kj

and for i = k + 1, . . . , n, we compute:

ℓ̃ik =

{
1

ℓ̃kk

(
aik −

∑i−1
j=1 ℓijℓkj

)
, aik ̸= 0,

0 aik = 0

This ensures that only non-zero terms of aij are summed, preserving the sparsity of A. We

have A = L̃L̃⊤ + R, where R is the remainder matrix. L̃L̃⊤ is symmetric and positive definite,
making it a candidate for B. We do not fill in the non-zero entries, which generally causes the
eigenvalues of BA to cluster, leading to faster convergence of the CG method.
In particular, the mapping x 7→ Bx is relatively easy to compute, as only sparse triangular
systems need to be solved.

Remark 3.17

The difficulty is that BA is not symmetric, even if A and B are both symmetric and positive
definite. We seek a workaround: If we can write B = CC⊤ (e.g., through the full Cholesky
decomposition), then:

CC⊤Ax = CC⊤b ⇐⇒ C⊤ACC−1x = C⊤b ⇐⇒ Ãx̃ = b̃

where x̃ = C−1x, b̃ = C⊤b, and Ã := C⊤AC is again symmetric and positive definite, allowing
us to apply the CG method.

Construction (Formal Application to the CG Method)
We start with x̃0 = C−1x0 in the algorithm and apply the procedure to all quantities with tildes.
We show that we can do this without knowing C. We compute:

x̃k+1 = x̃k + αkd̃k ⇐⇒ C−1xk+1 = C−1xk + αkC
−1dk

where dk := Cd̃k. Multiplying by C gives:

xk+1 = xk + α̃kdk

Now, we express r̃k as:

r̃k = Ãx̃k − b̃ = C⊤ACC−1xk − C⊤b = C⊤(Axk − b) = C⊤rk

Thus, with the CG algorithm:

r̃k+1 = r̃k − αkÃd̃k ⇐⇒ C⊤rk+1 = C⊤rk − αkC
⊤ACC−1dk ⇐⇒ rk+1 = rk − αkAdk

68 CHAPTER 3. CONJUGATE GRADIENT METHODS

So, the determination of rk remains unchanged. For the search directions:

d̃k+1 = r̃k+1 + βkd̃k ⇐⇒ C−1dk+1 = C⊤rk+1 + βkC
−1dk ⇐⇒ dk+1 = Brk+1 + βkdk

Finally, we show that no C appears in the coefficients:

αk =
⟨r̃k, r̃k⟩
⟨Ãd̃k, d̃k⟩

=
⟨C⊤rk, C

⊤rk⟩
⟨C⊤ACC−1dk, C−1dk⟩

=
⟨rk, CC⊤rk⟩
⟨Adk, dk⟩

=
⟨rk, Brk⟩
⟨Adk, dk⟩

,

βk =
⟨r̃k+1, r̃k+1⟩

⟨r̃k, r̃k⟩
=

⟨rk+1, Brk+1⟩
⟨rk, Brk⟩

.

Algorithm 3.5 – Preconditioned CG Method

We want to solve Ax = b with A symmetric and positive definite, and use B symmetric and
positive definite with B ≈ A−1.
We choose x0 ∈ Rn arbitrarily and r0 = b− Ax0, d0 = Br0 ρ0 = ⟨Br0, r0⟩, and then iterate for
k = 0, 1, 2, . . . (until

√
ρk ≤ tol · ∥b∥2):

xk+1 = xk + αkdk

rk+1 = rk − αkAdk

dk+1 = Brk+1 + βkdk

with the coefficients:

αk =
ρk

⟨Adk, dk⟩
, βk =

ρk+1

ρk
, ρk+1 = ⟨Brk+1, rk+1⟩.

Algorithm 3 Preconditioned Conjugate Gradient Method

Require: A ∈ Rn×n SPD, b ∈ Rn, preconditioner B ≈ A−1 (SPD), initial guess x0, tolerance
ε > 0

1: r0 = b−Ax0
2: d0 = Br0
3: for k = 0, 1, 2, . . . until convergence do

4: αk =
r⊤k Brk
d⊤
k Adk

5: xk+1 = xk + αkdk
6: rk+1 = rk − αkAdk
7: if ∥rk+1∥ < ε then
8: break
9: end if

10: βk =
r⊤k+1Brk+1

r⊤k Brk

11: dk+1 = Brk+1 + βkdk
12: end for

Remark 3.18 – Implementation

For the implementation of the method, we store only 5 vectors: (x, r,Br, d,Ad). Furthermore,
we note that we do not need the matrices A and B themselves, but only the mappings u 7→ Au
and v 7→ Bv.

Theorem 3.7

Let 0 < γ⟨v,B−1v⟩ ≤ ∥v∥A ≤ Γ⟨v,B−1v⟩ for all v ∈ Rn. Then:

∥xk − x∗∥A ≤ 2

(√
κ̃− 1√
κ̃+ 1

)k

∥x0 − x∗∥A

3.7. CONJUGATEGRADIENTMETHOD FORMINIMIZING NON-QUADRATIC FUNCTIONS69

with κ̃ = cond2(BA) ≤ Γ
γ .

Proof. 1. First, we compute using Ã = C⊤AC:

∥xk − x∗∥2A = ⟨xk − x∗, A(xk − x∗)⟩ = ⟨C(x̃k − x̃∗), AC(x̃k − x̃∗)⟩
= ⟨x̃k − x̃∗, Ã(x̃k − x̃∗)⟩ = ∥x̃k − x̃∗∥2

Ã
.

Using the theorem on condition-dependent error estimation for the tilde-system, we imme-
diately obtain the estimate for our theorem with κ̃ = cond2(Ã).

2. By the definition of the condition number:

cond2(Ã) =

√
λmax(Ã⊤Ã)

λmin(Ã⊤Ã)
, cond2(BA) =

√
λmax((BA)⊤(BA))

λmin((BA)⊤(BA))
.

To compute the condition number of BA, we first compute:

(BA)⊤BA = ABBA = ACC⊤C⊤AC = (C⊤)−1C⊤ACC⊤CC⊤ACC−1

= (C⊤)−1ÃC⊤ · CÃC−1 = (CÃC−1)⊤(CÃC−1)

But this has exactly the same eigenvalues as Ã due to the change of basis. Thus, we have
cond2(BA) = cond2(Ã).

3. Clearly, it holds that:

λmin(Ã)⟨v,B−1v⟩ ≤ ⟨v,Av⟩ ≤ λmax(Ã)⟨v,B−1v⟩, ∀v ∈ Rn,

and therefore, γ ≤ λmin(Ã), Γ ≥ λmax(Ã).

3.7 Conjugate Gradient Method for Minimizing Non-Quadratic
Functions

Motivation
We now consider a function f : Rn → R and seek a (local) minimum of f , where f is generally
not quadratic.

Review From undergraduate analysis, we know that if x∗ ∈ Rn is a local minimum of f (with
f twice continuously differentiable), then g(x∗) = ∇f(x∗) = 0 and the Hessian matrix H(x∗) =
∇2f(x∗) is symmetric and positive semi-definite.

Conversely, if ∇f(x∗) = 0 and the Hessian matrix is positive definite, then x∗ is a local
minimum.

Idea
We choose an initial point x near x∗. Then, using the Taylor expansion:

f(x) = f(x∗) +∇f(x∗)(x− x∗)︸ ︷︷ ︸
=0

+
1

2
(x− x∗)⊤∇2f(x∗)(x− x∗) +O(∥x− x∗∥3)

locally behaves like a quadratic function. We thus modify methods that solve quadratic minimization
problems well, which leads to the conjugate gradient (CG) method. If x is far from x∗, at least we
move in the descent direction of the CG method.

70 CHAPTER 3. CONJUGATE GRADIENT METHODS

Algorithm 3.6 – Modification of the CG Method

We start with x0 ∈ Rn arbitrary and choose d0 = −g0 = −∇f(x0), and iterate for k = 0, 1, 2, . . .,
until, for example, the stopping criterion ∥gk∥ ≤ tol · ∥g0∥ is satisfied: We select the minimum
of f in the search direction dk, i.e., we find αk for

xk+1 := xk + αkdk with f(xk+1) = min
αk

f(xk + αkdk),

which is a one-dimensional minimization problem that we can also approximate, for example,
using the criterion:

|⟨∇f(xk + αkdk), dk⟩| ≤ σ |⟨∇f(xk), dk⟩|

for some σ ∈ R. We then set gk+1 := ∇f(xk+1).
Next, we update the search direction as dk+1 = −gk+1 + βkdk.

Algorithm 4 Nonlinear Conjugate Gradient Method (Polak–Ribière)

Require: Objective function f : Rn → R, gradient ∇f , initial guess x0, tolerance ε > 0
1: g0 = ∇f(x0)
2: d0 = −g0
3: for k = 0, 1, 2, . . . until convergence do
4: Find αk > 0 satisfying sufficient decrease condition (e.g., Armijo/Wolfe) for f(xk + αkdk)
5: xk+1 = xk + αkdk
6: gk+1 = ∇f(xk+1)
7: if ∥gk+1∥ < ε · ∥g0∥ then
8: break
9: end if

10: βk = (gk+1−gk)
⊤gk+1

g⊤
k gk

▷ Polak–Ribière

11: dk+1 = −gk+1 + βkdk
12: end for

Remark 3.19

There are several different approaches in the literature for the coefficient βk in the update of the
search direction dk+1 = −gk+1 + βkdk :

1. Fletcher–Reeves: βFR
k =

⟨gk+1, gk+1⟩
⟨gk, gk⟩

2. Polak–Ribière: βPR
k =

⟨gk+1 − gk, gk+1⟩
⟨gk, gk⟩

3. Hestenes–Stiefel: βHS
k =

⟨gk+1 − gk, gk+1⟩
⟨gk+1 − gk, dk⟩

4. Dai–Yuan: βDY
k =

⟨gk+1, gk+1⟩
⟨gk+1 − gk, dk⟩

In the quadratic case, all these formulas are equivalent to βk = ⟨rk+1,rk+1⟩
⟨rk,rk⟩ (rk = −gk), due to

the property that ⟨rk+1rk⟩ = 0 and ⟨rk, rk⟩ = ⟨rk, dk⟩
In the non-quadratic case, the different choices of βk lead to different convergence behaviors:

• The Polak–Ribière formula is often preferred in practice, because if the algorithm ”stalls,”
i.e., xk+1 ≈ xk and gk+1 ≈ gk, then for Polak-Ribiere, βk = 0, and there is a new search
direction, meaning the method starts over with dk+1 = −gk+1. On the other hand, for
Fletcher–Reeves, βk = 1, and the descent is not guaranteed.

3.7. CONJUGATEGRADIENTMETHOD FORMINIMIZING NON-QUADRATIC FUNCTIONS71

• The Hestenes–Stiefel and Dai–Yuan formulas offer alternative trade-offs between descent
guarantees and practical performance. Dai–Yuan is designed to improve global convergence
and ensures the direction remains a descent direction under mild conditions.

In practice, hybrid strategies (e.g., combining Polak–Ribière and Dai–Yuan, or using a safe-
guarded max(0, βk)) are also commonly used to balance convergence speed and stability.

Algorithm 3.7 – Preconditioned CG Method

We can view the preconditioned CG method as an acceleration of the simplified Newton method.
It is

∇f(x) = 0, xk+1 = xk + αk ∆xk

with
∆xk = −

(
∇2f(x0)

)−1 ∇f(xk)︸ ︷︷ ︸
=g(xk)

.

Here, we use the Hessian matrix H(x0) ≈ L0L
⊤
0 as possibly an incomplete Cholesky decompo-

sition. Then H(x0)
−1 ≈ B := L−T

0 L−1
0 ≈ CC⊤, where B is a preconditioner. It follows that

g(x) = 0 ⇐⇒ g̃(x̃) = C⊤ · g(C C−1x︸ ︷︷ ︸
x̃

) = 0. Furthermore, H̃ = C⊤HC.

We can now proceed as in Chapter 6 and obtain the new search direction:

dk+1 = Brk+1 + βkdk,

with

βk =
⟨gk+1 − gk, Bgk+1⟩

⟨gk, Bgk⟩
.

Algorithm 5 Preconditioned Conjugate Gradient Method for Nonlinear Optimization

Require: Objective function f : Rn → R, gradient ∇f , preconditioner B ≈ H(x0)
−1 (SPD),

initial guess x0, tolerance ε > 0
1: g0 = ∇f(x0)
2: d0 = −Bg0
3: for k = 0, 1, 2, . . . until convergence do
4: Find αk > 0 satisfying sufficient decrease (e.g. Wolfe/Armijo) for f(xk + αkdk)
5: xk+1 = xk + αkdk
6: gk+1 = ∇f(xk+1)
7: if ∥gk+1∥ < ε · ∥g0∥ then
8: break
9: end if

10: βk = (gk+1−gk)
⊤Bgk+1

g⊤
k Bgk

▷ Polak–Ribière

11: dk+1 = −Bgk+1 + βkdk
12: end for

Remark 3.20

We could also show that the CG method converges for strictly convex functions, i.e., the Hessian
matrix is positive definite at every point. However, for non-convex functions, convergence is not
guaranteed.
In the next chapter, we will see how to construct a method if A is not symmetric and positive
definite.

72 CHAPTER 3. CONJUGATE GRADIENT METHODS

Chapter 4

Iterative Methods for Large
Linear Systems

Motivation
We consider the linear system Ax = b with A ∈ Rn×n invertible. Typically, n is very large, and A
is sparse. We aim to construct a method that requires O(n) operations. In Numerical Analysis I,
we know of direct methods for this, such as the LU decomposition. However, this approach has the
problem of ”fill-ins,” i.e., zero elements become filled, causing the cost to increase to O(n3).

An alternative method with better computational complexity is an iterative indirect method.
From the previous section, we know that for a symmetric and positive definite A, such a method
exists in the Krylov space. Even though our A is no longer symmetric and positive definite, we
still seek an iterative method in a Krylov space with the approximation:

Kk(A, r0) := span{r0, Ar0, . . . , Ak−1r0}, r0 = b−Ax0

since constructing this space requires only multiplications with A, which is computationally inex-
pensive when A is sparse. (In the following, without loss of generality, we assume x0 = 0 and thus
r0 = b.)

Remark 4.1 – Problem with the Basis Selection

If Vk = (v1, . . . , vk) ∈ Rn×k is the basis of Kk, an element xk ∈ Kk can be written as:

xk =

k∑
i=1

yk,ivi = Vkyk.

However, there are issues:

1. How do we choose the basis? It is not a good idea to simply take Akr, because in the power
method, large eigenvalues dominate the matrix, leading to nearly linearly dependent vectors
and an unmanageable basis.

2. We do not know how to select the coefficients yk.

We will now discuss two methods based on the Gram-Schmidt procedure: the Arnoldi method
and the Lanczos method, which do not calculate the Krylov iterations directly. Additionally, we
will see how to cleverly choose the coefficient vector yk.

4.1 Arnoldi Method

Idea
We construct an orthonormal basis (ONB) for Kk(A, b) using a modification of the Gram-Schmidt

73

74 CHAPTER 4. ITERATIVE METHODS FOR LARGE LINEAR SYSTEMS

procedure. We use a modification because the original Gram-Schmidt process is numerically unsta-
ble, and rounding errors cause vectors that are not orthogonal. We compute recursively: Let v1 be
an ONB of K1. Then we set:

v1 :=
b

∥b∥2
.

For an ONB v1, . . . , vk of Kk (with respect to the 2-norm), we choose for Kk+1:

ṽk+1 := Avk −
k∑

j=1

hjkvj ∈ Kk+1,

with coefficients hjk chosen so that ṽk+1 is orthogonal to the others. We then set:

vk+1 :=
ṽk+1

∥ṽk+1∥2
.

We now want to determine the coefficients hjk. For i = 1, . . . , k, we must have:

0 = ⟨vi, ṽk+1⟩ = ⟨vi, Avk⟩ −
k∑

j=1

hjk ⟨vi, vj⟩︸ ︷︷ ︸
δij

= ⟨vi, Avk⟩ − hik.

Thus, hik = ⟨vi, Avk⟩.

Algorithm 4.1 – Arnoldi, 1951

We begin by setting β := ∥b∥ and v1 := b
β . For k ≥ 1, we compute:

ṽ
(1)
k+1 = Avk,

and then, for j = 1, . . . , k, we compute:

hjk := ⟨vj , ṽ(j)k+1⟩, ṽ
(j+1)
k+1 := ṽ

(j)
k+1 − hjkvj ,

and finally:

hk+1,k := ∥ṽ(k+1)
k+1 ∥, vk+1 :=

ṽ
(k+1)
k+1

hk+1,k
.

Remark 4.2 – Termination Behavior

The Arnoldi method terminates when hk+1,k = 0. In this case:

AVk = VkHk =⇒ Kk+1 = Kk.

Remark 4.3 – Simplifications in Matrix Notation

We set Hk = (hij)
k
i,j=1 and note that hij = 0 for i > j + 1, so this is a Hessenberg matrix.

Then, H̃k = (hij)
k+1
i,j=1 is a Hessenberg matrix with an additional row. Using this notation and

the algorithm, we can write, for each k (with Vk := (v1, . . . , vk)):

Avk = hk+1,kvk+1 +

k∑
j=1

hjkvj , so : AVk = Vk+1H̃k = VkHk + hk+1,kvk+1e
T
k .

The orthogonality ⟨vi, vj⟩ = δij then gives: V T
k Vk = I, and we obtain:

V T
k AVk = V T

k Vk+1H̃k =
(
Ik 0

)
H̃k = Hk, so Hk = V T

k AVk.

4.2. FOM AND GMRES: GALERKIN AND MINIMIZATION OF THE RESIDUUM 75

Remark 4.4 – Special Case of a Symmetric Matrix

If A is symmetric, some of the recursions simplify significantly. In this case, Hk is symmetric,
hence tridiagonal. We then obtain the following three-term recursion:

hk+1,kvk+1 = ṽk+1 = Avk − hkkvk − hk−1,kvk−1.

Thus, we have O(k) operations to compute v1, . . . , vk. In the general (non-symmetric) case, this
requires O(k2) operations.

Theorem 4.1

If hk+1,k = 0 and hj+1,j ̸= 0 for j ≤ k − 1, then:

1. Every eigenvalue of Hk is an eigenvalue of A. This holds even if A is not invertible.

2. There exists a vector yk ∈ Rk such that Ax = b holds with x = Vkyk.

Proof. 1. Let λ be an eigenvalue of Hk with eigenvector y ̸= 0. Then: Hky = λy ⇐⇒ VkHky =
λVky, but VkHk = AVk due to hk+1,k = 0. Hence, A(Vky) = λ(Vky). Therefore, λ is an
eigenvalue of A with eigenvector Vky.

2. Since A is invertible, 0 is not an eigenvalue of A. By item 1, 0 is not an eigenvalue of
Hk. Hence, Hk is invertible. We want to find x = Vkyk such that Ax = b. Using the
Arnoldi relation AVk = VkHk (which holds since hk+1,k = 0), this is equivalent to AVkyk =
VkHkyk = b. Recall that b = βv1, where β = ∥b∥ and v1 is the first column of Vk. Thus,
b = βv1 = Vkβe1. Since Hk is invertible, the linear system Hkyk = βe1 has a unique solution
yk. Then, x = Vkyk satisfies Ax = b.

4.2 FOM and GMRES: Galerkin and Minimization of the
Residuum

We now want to determine the coefficient vector yk. There are two approaches:

Idea (Galerkin Approach)
We require that the residual Axk − b is orthogonal to the Krylov subspace, i.e.,

⟨Axk − b, v⟩ = 0 ∀v ∈ Kk.

If A is symmetric and positive definite, we would get the Conjugate Gradient (CG) method. We
ignore the definiteness of A and continue analogously.

It suffices that this is orthogonal to all basis vectors, i.e. V T
k (Axk − b) = 0. Then, from

xk = Vkyk, we have Axk = AVkyk and b = βv1 = βVke1. Using V T
k Vk = Ik and V T

k vk+1 = 0, we
get:

V T
k (Axk − b) = V T

k Axk − V T
k b = V T

k Vk+1H̃kyk − βV T
k Vke1 = Hkyk − βe1.

We require this to be zero, i.e., we obtain the equation Hkyk = βe1, which is uniquely solvable if
Hk is invertible.

Remark 4.5

In the CG method, A is symmetric and positive definite, so is Hk.

Algorithm 4.2 – FOM

We iteratively solve xk = Vkyk with Hkyk = βe1.

Historical Note. FOM stands for ”Full Orthogonalisation Method” and was introduced by Saad
in 1981.

76 CHAPTER 4. ITERATIVE METHODS FOR LARGE LINEAR SYSTEMS

Idea (Minimization of the Residuum)
We now minimize the residual, i.e., we seek xk ∈ Kk(A, b) such that ∥Axk − b∥2 = min . Since
Vk+1 is orthogonal and norms are invariant under orthogonal matrices, we have:

∥Axk − b∥2 = ∥AVkyk − βv1∥2 = ∥Vk+1(H̃kyk − βe1)∥2 = ∥H̃kyk − βe1∥2.

This gives us a linear least squares problem: Find yk ∈ Rk such that

∥H̃kyk − βe1∥2 = min

If hi+1,i ̸= 0 for i = 1, . . . , k, then the least squares problem is uniquely solvable.

Algorithm 4.3 – GMRES

We compute xk := Vkyk with ∥H̃kyk − βe1∥2 = min.

Historical Note. GMRES stands for ”Generalized Minimum Residual Method” and was devel-
oped by Saad and Schultz in 1986.

Proposition 4.1 – Properties of FOM and GMRES

1. If k is the first index with hk+1,k = 0 (then AVk = VkHk), both FOM and GMRES in the
k-th step provide the exact solution to Ax = b.

2. For the GMRES residual, we have:

∥Axk − b∥2 = min
deg pk=k
pk(0)=1

∥pk(A)b∥2.

3. Let A = TΛT−1 with Λ = diag(λj). Then,

∥Axk − b∥ ≤ cond(T) min
deg pk=k
pk(0)=1

max
j=1,...,n

|pk(λj)|∥b∥.

4. If Hk is not invertible (i.e., xFOM
k not exists), then xGMRES

k+1 = xGMRES
k stagnates.

Proof. 1. For FOM, as Hk is nonsingular (since its eigenvalues are inherited from A, and A is
invertible), the equation Hkyk = βe1 has a unique solution yk, and hence xk = Vkyk satisfies:

Axk = AVkyk = VkHkyk = Vkβe1 = βv1 = b.

For GMRES, we compute:

∥AxGMRES
k − b∥2 ≤ ∥AxFOM

k − b∥2 = 0.

2. We have xk = qk−1(A)b with deg qk−1 = k − 1, and we compute:

b−Axk = (I −Aqk−1(A))b = pk(A)b with pk(λ) = 1− λqk−1(λ).

From the minimization condition for the residual, the statement follows.

3. From the second part, we have:

∥Axk−b∥ = min
deg pk=k
pk(0)=1

∥pk(A)b∥ = min
deg pk=k
pk(0)=1

∥Tpk(Λ)T−1b∥ ≤ cond(T) min
deg pk=k
pk(0)=1

max
j=1,...,n

|pk(λj)|∥b∥.

4. Omitted proof.

4.3. LANCZOS ALGORITHM 77

Remark 4.6 – Implementation of GMRES

We perform a QR decomposition of H̃k, i.e., there exists a Qk such that:

H̃k = Qk

(
Rk

0

)
,

and thus we have:

∥H̃kyk − βe1∥2 =

∥∥∥∥(Rkyk
0

)
− βQ⊤

k e1

∥∥∥∥
2

.

Remark 4.7 – Computational Cost of GMRES

We now want to examine the computational cost for the non-symmetric case A ̸= AT :

1. We must compute vk+1 using the Arnoldi method, which involves k multiplications of A
with a vector. This requires O(k2n) operations.

2. Computing yk requires O(k2) operations.

3. Computing xk = Vkyk requires O(kn) operations.

A major issue is storage: we need (k+1)n memory slots, meaning that the GMRES method can
only be performed if k is not too large, provided n is large. This can be addressed by performing
only a fixed number of iterations and restarting the method. The downside is worse convergence.

Remark 4.8 – Stopping Criterion

A typical stopping condition is that we require ∥Axk − b∥ ≤ tol. This is computationally expen-
sive. However, we know that ∥Axk − b∥ = ∥H̃kyk − βe1∥, which is easier to compute. Therefore,
we stop the method when:

∥H̃kyk − βe1∥ ≤ tol.

4.3 Lanczos Algorithm

Motivation
The difficulty with the Arnoldi method is that we need the vectors v1, . . . , vk to compute vk+1, which
leads to a high computational and especially memory cost. Our goal is to obtain a basis of Kk(A, b)
with a short recursion (not only for symmetric A).

Idea (Lanczos) 1. We abandon the orthonormal basis (ONB).

2. We compute two bases v1, . . . , vk for Kk(A, b) and w1, . . . , wk for Kk(A
T , c).

3. We require bi-orthogonality, i.e.,

⟨wi, vj⟩ = 0 for i ̸= j.

Construction (Derivation of the Algorithm)
We make the following ansatz:

vk+1 = Avk −
k∑

j=1

hjkvj , wk+1 = ATwk −
k∑

j=1

ℓjkwj .

Due to bi-orthogonality, we now require for i = 1, . . . , k:

0 = ⟨wi, vk+1⟩ = ⟨wi, Avk⟩ − ⟨wi, vi⟩hik, 0 = ⟨wk+1, vi⟩ = ⟨ATwk, vi⟩ − ⟨wi, vi⟩ℓik.

We now compute using the basis representation:

⟨wi, Avk⟩ = ⟨ATwi, vk⟩ =

〈
wi+1 +

i∑
j=1

ℓjiwj , vk

〉
= 0 for i+ 1 < k.

78 CHAPTER 4. ITERATIVE METHODS FOR LARGE LINEAR SYSTEMS

If additionally ⟨wi, vi⟩ ≠ 0, it follows that hik = 0 for i+1 < k, and similarly ℓik = 0 for i+1 < k.
We continue the computation:

hkk =
⟨wk, Avk⟩
⟨wk, vk⟩

=
⟨ATwk, vk⟩
⟨wk, vk⟩

= ℓkk.

Next, we compute using the recurrence relation:

hk−1,k =
⟨wk−1, Avk⟩
⟨wk−1, vk−1⟩

=
⟨ATwk−1, vk⟩
⟨wk−1, vk−1⟩

=
⟨wk +

∑
. . . , vk⟩

⟨wk−1, vk−1⟩
=

⟨wk, vk⟩
⟨wk−1, vk−1⟩

= ℓk−1,k.

Algorithm 4.4 – Lanczos, 1952

1. We choose b, c ̸= 0 and set v1 := b, w1 := c, and v0 := w0 := 0.

2. For k = 1, 2, 3, . . . (as long as ⟨wk, vk⟩ ≠ 0), we set:

αk :=
⟨wk, Avk⟩
⟨wk, vk⟩

, βk :=
⟨wk, vk⟩

⟨wk−1, vk−1⟩
,

where βk exists only for k ≥ 2. Finally, we set:

vk+1 := Avk − αkvk − βkvk−1, wk+1 := ATwk − αkwk − βkwk−1.

Remark 4.9

For A = AT , the Arnoldi and Lanczos methods coincide.

Notation – Simplification in Matrix Notation

We denote the basis matrices as:

Vk := (v1, . . . , vk), Wk := (w1, . . . , wk),

and the matrix Tk as:

Tk :=



α1 β2 0 · · · 0

1 α2 β3 · · ·
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . βk

0 · · · 0 1 αk


.

We also define:

T̃k :=

(
Tk

0 · · · 0 1

)
∈ R(k+1)×k.

Remark 4.10 – Lanczos Method in Matrix Notation

In the above notation, we obtain:

AVk = Vk+1T̃k, ATWk =Wk+1T̃k.

In particular, we have:

Kk(A, b) = Span{v1, . . . , vk}, Kk(A
T , c) = Span{w1, . . . , wk},

and with bi-orthogonality:

WT
k Vk = diag(wT

1 v1, . . . , w
T
k vk) =: Dk.

4.4. BICG AND QMR 79

It follows that: WT
k AVk = DkTk, Tk = D−1

k WT
k AVk, since we have:

WT
k AVk =WT

k Vk+1T̃k =
(
Dk 0

)
T̃k =

(
Dk 0

)(Tk
∗

)
= DkTk.

Remark 4.11

1. In practice, the vectors vi and wi are often normalized.

2. We choose the stopping criterion ⟨wk+1, vk+1⟩ = 0. This can be divided into two different
types of stopping criteria:

• A regular stop occurs if vk+1 = 0, in which case AVk = VkTk and Kk+1(A, b) =
Kk(A, b). Due to the symmetry of v and w, we analogously obtain for wk+1 = 0 that
ATWk =WkTk and Kk+1(A

T , c) = KK(A
T , c).

• A serious stop occurs if vk+1 ̸= 0 and wk+1 ̸= 0, but it could happen that
⟨vk+1, wk+1⟩ ≈ 0, due to rounding errors or numerical instability during inversion
due to poor conditioning.

Remark 4.12 – Look-ahead Lanczos

We want to avoid a serious stop as much as possible. To achieve this, we modify the Lanczos
method by relaxing the bi-orthogonality to block orthogonality, i.e., we have:

WT
k Vk =


B1 0 · · · 0
0 B2 · · · 0
...

...
...

...
0 0 · · · Bℓ

 ,

where Bi is a square matrix block, and ∥B−1
i ∥ is not too large. This results in a stable algorithm

with a short recursion.

4.4 BiCG and QMR

Motivation
We are still working with the linear system Ax = b and seek an approximation xk = Vkyk, where
Vk =

(
v1 . . . vk

)
is a Lanczos basis. We consider various approaches for this.

Remark 4.13 – Galerkin Approach

We require that ⟨w,Axk − b⟩ = 0 for all w ∈ Kk(A
T , c). We test this for w = wi, resulting in

WT
k (Axk − b) = 0. Similar to the Arnoldi method, we obtain for b = βv1 = Vkβe1:

WT
k Axk −WT

k Vke1 = 0.

Since xk = Vkyk, this becomes: WT
k AVkyk −WT

k Vkβe1 = 0. But since WT
k AVk = DkTk and

WT
k Vk = Dk, we get:

DkTkyk = Dkβe1.

If Dk is invertible, we obtain the following linear system with the tridiagonal matrix Tk:

Tkyk = βe1.

Algorithm – Bi-Conjugate Gradient Method (BiCG)

We solve xk = Vkyk and Tkyk = βe1.

80 CHAPTER 4. ITERATIVE METHODS FOR LARGE LINEAR SYSTEMS

Remark 4.14 – Computational Effort

We solve the linear system via an LU decomposition Tk = LkRk, i.e.

xk = Vkyk = VkR
−1
k︸ ︷︷ ︸

=:Pk

L−1
k βe1︸ ︷︷ ︸
=:qk

with qk =

ρ1...
ρk

 =

(
qk−1

ρk

)
.

Thus, Lkqk = βke1, implying ρk = −ℓk,k−1ρk−1, and we can compute this in a short recursion.
With the definition of Pk, we have PkRk = Vk = (v1 · · · vk), so Pk =

(
p1 . . . pk

)
, and from

Vk = PkRk, we obtain:

v1 = p1r11, v2 = p1r12 + p2r22, . . . , vk = pk−1rk−1,k + pkrkk.

These are short recursions for pk, and thus for xk:

xk = Pkqk = Pk−1qk−1 + pkρk = xk−1 + pkρk.

Thus, we have short recursions for xk, and we can iteratively compute (xk, pk, ρk) to obtain
(xk+1, pk+1, ρk+1).

Historical Note. The BiCG method was proposed by Lanczos in 1952 and by Fletcher in 1976.
Construction (Minimization Approach)
We now consider another approach to solving the problem and require:

β := ∥b∥, ∥vj∥ = ∥wj∥ = 1 ∀j

which yields:

∥Axk − b∥ = ∥AVkyk − βv1∥ = ∥Vk+1T̃kyk − Vk+1βe1∥ ≤ ∥Vk+1∥ · ∥T̃kyk − βe1∥

If ∥vj∥ = 1 for all j, then ∥Vk+1∥ ≤
√
k + 1. The idea is now to minimize only the norm of the

coefficient vector ∥T̃kyk − βe1∥.

Algorithm 4.5 – Quasi-Minimization of Residual (QMR)

We compute xk = Vkyk with ∥T̃kyk − βe1∥ = min.

Remark 4.15 – Computational Effort

The implementation of the QMR method is similar to the GMRES method and utilizes ideas

from the BiCG method. We have T̃k = Qk

(
Rk

0

)
and

QT
k (βe1) =

(
qk
ρk+1

)
, with qk =

ρ1...
ρk

 =

(
qk−1

ρk

)
.

Since the solution to the least squares problem is equivalent to Rkyk = qk, we have xk = Vkyk =
VkR

−1
k qk, with VkR

−1
k = Pk = (p1 · · · pk), so:

xk = Pk−1qk−1︸ ︷︷ ︸
=xk−1

+pkρk.

Thus, we obtain the same short recursions for BiCG, allowing us to compute (xk, Pk, ρk) and
then (xk+1, Pk+1, ρk+1).

Historical Note. The QMR method was proposed by Freund and Nachtigal in 1991.

4.4. BICG AND QMR 81

Remark 4.16

The QMR method converges much more smoothly than the BiCG method, but it is not neces-
sarily monotonically decreasing (as in the GMRES method).

Summary We considered several methods:

Galerkin Residual minimization
Arnoldi FOM GMRES
Lanczos BiCG QMR

We compare the Arnoldi and Lanczos methods:

Arnoldi Lanczos
Orthonormal basis (ONB) Biorthogonal bases

Stable (in general) Stabilization may require look-ahead
Long recurrence Short recurrence

We can also compare Galerkin and residual minimization:

Galerkin Residual Minimization
Linear system (LGS) Linear least squares problem

Residual norms vary more smoothly
(in GMRES: monotonically decreasing)

In practice, preconditioning is very important. However, this often falls under the motto: “more
art than science.” Instead of solving the system Ax = b, we solve the preconditioned system

M1AM2u =M1b, with x =M2u,

for example, using an incomplete LU decomposition.

82 CHAPTER 4. ITERATIVE METHODS FOR LARGE LINEAR SYSTEMS

Chapter 5

Linear Optimization

5.1 Examples (from Economics)

5.1.1 Introductory examples

A factory produces two products p1 and p2 from three raw materials q1, q2, q3. Producing one unit
of p1 requires 1 unit of q1, 2 units of q2, and 4 units of q3. For the production of p2, 6 units of q1,
2 units of q2, and 1 unit of q3 are needed.

We have 30 units of q1, 15 units of q2, and 24 units of q3 available. The sales profit for p1 is
two euros per unit and for p2 one euro per unit.

We want to find the optimal production quantities for p1 and p2, i.e. we seek x = (x1, x2) such
that 2x1 + 1x2 = max!. The constraints are x1 ≥ 0 and x2 ≥ 0, because we can’t sell a negative
number of products. Due to the limited raw materials, we get additional constraints:

1x1 + 6x2 ≤ 30 (available q1 material)

2x1 + 2x2 ≤ 15 (available q2 material)

4x1 + 1x2 ≤ 24 (available q3 material).

We can solve this graphically by plotting the constraints and identifying the feasible region as
a polygon. We then look for equipotential line, i.e. lines defined by 2x1 + x2 = c for any c. The
reason is that we want to find the largest value of c such that (x1, x2) is in the feasible region. See
Figure 5.1 for the graphical solution.

The solution occurs at a corner, i.e. we can try all corners and obtain the solution by comparing
a finite number of values. Here, the solution is unique, namely (x1, x2) =

(
11
2 , 2

)
. The profit is:

2 · 11
2 + 1 · 2 = 13.

Remark 5.1

1. For 2x1 +2x2 = max, this would not be unique but would yield the same maximum profit
along an edge (the red edge on Figure 5.1).

2. The solution x1 = 11
2 assumes the divisibility of product p1; otherwise, we could require

(x1, x2) ∈ Z × Z, leading to integer optimization, which is much more complex and not
covered here (but still very interesting and very much used in practice!).

5.1.2 Consumer Problem

We have four food items characterized by the following table:
We want to buy 12 nutritional units and 7 vitamin units at the minimum price. We seek

x = (x1, x2, x3, x4) with xi ≥ 0 and the constraints:

2x1 + 1x2 + 0x3 + 1x4 ≥ 12 (Nutritional units)

3x1 + 4x2 + 3x3 + 5x4 ≥ 7 (Vitamin units),

83

84 CHAPTER 5. LINEAR OPTIMIZATION

0 2 4 6
0

1

2

3

4

5

2x
1
+
x
2
=
1

2x
1
+
x
2
=
2

2x
1
+
x
2
=
3

2x
1
+
x
2
=
4

2x
1
+
x
2
=
5

2x
1
+
x
2
=
6

2x
1
+
x
2
=
7

2x
1
+
x
2
=
8

2x
1
+
x
2
=
9

2x
1
+
x
2
=
10

2x
1
+
x
2
=
11

2x
1
+
x
2
=
12

2x
1
+
x
2
=
13

2x
1
+
x
2
=
14

x1

x
2

x1 + 6x2 = 30

2x1 + 2x2 = 15

4x1 + x2 = 24

Figure 5.1: Graphical solution for the problem of Section 5.1.1

Food A B C D
Nutritional Value 2 1 0 1

Vitamins 3 4 3 5
Price 2 2 1 8

Table 5.1: Data for the Consumer Problem

and the minimization problem:

2x1 + 2x2 + 1x3 + 8x4 = min!

The variables xj here count the number of food types we pay for (x1 for food type A, x2 for
food type B, . . .).

Notation 5.1

The notation f(x) = min! means that we are looking for x such that f(x) = miny f(y).

5.1.3 Extension to the Competitor Problem

A competitor introduces two new food items with the following characteristics:

I II
Nutritional Value 1 0

Vitamins 0 1
Price y1 y2

We want to determine the prices y1 and y2 such that the total sales price is maximized, i.e. we
have the problem 12y1 + 7y2 = max!, as consumers will buy only what is necessary. We must find
the same amount of nutritional value and vitamins but at a lower cost than with products A, B,
C, D. Under y1, y2 ≥ 0, the constraints are:

5.1. EXAMPLES (FROM ECONOMICS) 85

2y1 + 3y2 ≤ 2 (to be better than food A)

1y1 + 4y2 ≤ 2 (to be better than food B)

0y1 + 3y2 ≤ 1 (to be better than food C)

1y1 + 5y2 ≤ 8 (to be better than food D).

Remark 5.2

The two problems are dual to each other in the following sense:

• The consumer problem can be written as: cTx = min! with x ∈ R4
+ and a matrix A such

that Ax ≥ b.

• In the competitor problem, we have bT y = max! with y ∈ R2
+ and AT y ≤ c.

Just to be clear, we have

A =

(
2 1 0 1
3 4 3 5

)
, b =

(
12
7

)
, c =


2
2
1
8

 .

In both cases, we consider the inequalities component-wise.

5.1.4 Transportation Problem

We have m producers and n markets. The transportation cost for one unit from i to j is given by
Cij . The supply is a1, . . . , am and the demand is b1, . . . , bn.

The problem is to find the most cost-effective transportation plan to send the products to the
markets. Our unknowns are the delivery quantities from i to j, called xij ≥ 0, with i = 1, . . . ,m
and j = 1, . . . , n. The total cost is calculated as:

z =

m∑
i=1

n∑
j=1

Cijxij

We assume that the total supply equals the total demand, i.e.
∑
ai =

∑
bj . We have:

• the total shipment from producer i is
∑n

j=1 xij = ai (a producer sends everything it has),

• the total intake of market j is
∑m

i=1 xij = bj (the demand of a market is fully supplied).

We have mn unknowns xij ≥ 0, under m+n constraints of which only m+n− 1 are independent.

5.1.5 Dual Problem to the Transportation Problem

A package service offers free transportation on all routes but charges a fee ui for sending a unit
from i and vj for delivering a unit to j.

The earnings of this service can be computed as follows:

• a producer ships everything it has, i.e. its ai units. They have to be picked by the trans-
portation company, hence they earn uiai for producer i

• Each market is fully supplied, hence its demand of bj units is fulfilled. The transportation
company needs to deliver bj units to market j, hence they earn vjbj for market j.

By summing over all producers and all markets, the total earnings of the transportation company
are

z′ =

m∑
i=1

uiai +

n∑
j=1

vjbj .

86 CHAPTER 5. LINEAR OPTIMIZATION

This cost1 z′ should be optimized but as a constraint, it must still be cheaper than traditional
post, i.e.

ui + vj ≤ Cij ∀i, j.

For the optima, it always holds that z′ ≤ z, because:

z′ =

m∑
i=1

uiai +

n∑
j=1

vjbj =
∑
i

ui
∑
j

xij +
∑
j

vj
∑
i

xij =
∑
i,j

(ui + vj)xij ≤
∑
i,j

Cijxij = z.

We now calculate when the equality holds: since all the summands are nonnegative,

z′ = z ⇐⇒ (ui + vj − Cij)xij = 0 ∀i, j ⇐⇒ ui + vj = Cij or xij = 0 ∀i, j.

If this holds, z′ is already maximal and z is minimal.

Remark 5.3

The converse of the last statement also holds, i.e. if z′ is maximal and z is minimal, then z = z′,
which we will see in the section on duality.

5.2 Linear Programs (Optimization problems)

Definition 5.1 – Mathematical problem formulation

We are given A ∈ Rm×n, b ∈ Rm, and c ∈ Rn. We write this in a tableau:

A b

cT

This leads to various problem formulations:

(a) We seek x ∈ Rn with:
Ax ≤ b, cTx = min!

(b) We seek x ∈ Rn with:
Ax ≤ b, x ≥ 0, cTx = min!

(c) We seek x ∈ Rn with:
Ax = b, x ≥ 0, cTx = min!

In each case, we consider the inequalities component-wise. The function cTx is also called the
objective or cost function.

Remark 5.4

We have written various problem formulations as minimizations as it is commonly done. This
is done without loss of generality, since a maximization problem can be reformulated as a mini-
mization problem:

max(f(x)) = −min(−f(x)).

Proposition 5.1 – Reformulation of standard forms

All three problems from Definition 5.1 can be equivalently transformed into each other.

1The term “cost” commonly refers to something that is paid/lost, but in optimization is it usual to call “cost”
the function to optimize (i.e. maximize or minimize). It can also be called “objective function”.

5.2. LINEAR PROGRAMS (OPTIMIZATION PROBLEMS) 87

Proof. (a) ⇒ (b): We set x := x+ − x− with x+, x− ≥ 0. Then:

(a) =⇒ A(x+ − x−) ≤ b, x+, x− ≥ 0, cT (x+ − x−) = min!

=⇒ (A,−A)
(
x+
x−

)
≤ b,

(
x+
x−

)
≥ 0, (cT ,−cT)

(
x+
x−

)
= min!

(b) ⇒ (c): We introduce so-called slack variables: let z ∈ Rm with z ≥ 0. Then we get:

(b) =⇒ Ax+ z = b, x ≥ 0, z ≥ 0, cTx = min!

=⇒ (A, I)

(
x
z

)
= b,

(
x
z

)
≥ 0, (cT , 0)

(
x
z

)
= min!

(c) ⇒ (a):
(c) =⇒ Ax ≤ b, Ax ≥ b, x ≥ 0, cTx = min!

=⇒ Ax ≤ b, −Ax ≤ −b, −x ≤ 0, cTx = min!

=⇒

 A
−A
−I

x ≤

 b
−b
0

 , cTx = min!

Remark 5.5

We note that the transitions each lead to increases in dimension.

Assumption 5.2.1
From now on, we will always consider formulations of the type (c), and we will assume rank(A) =
m.

The feasible region of the solution is {x ∈ Rn, Ax = b, x ≥ 0}. Here, n is the dimension of the
solution and m is the number of equality constraints. It is also sensible to assume that n ≥ m.

Example 5.1

1. n = 2,m = 1. Then the feasible region is a part of a line that runs in the first quadrant of
a coordinate system. This can be bounded, unbounded, or even empty.

2. n = 3,m = 1. Then the feasible region is a plane that is a side face of a polyhedron (also
called a simplex). The feasible region can, however, also be unbounded or empty.

3. n = 3,m = 2. This is the intersection of two planes, which is generally a line.

We note that the corners (or endpoints) in our examples have at most m non-zero components.
This motivates the general definition of what we understand as a corner in higher dimensions.

Remark 5.6

Note that the assumption rank(A) = m is done without loss of generality: assume it is not, then
at least one row (labelled r) of A is linearly dependent from the others, i.e. there are coefficients
αj such that Ar,• =

∑m
j=1,j ̸=r αjAj,•. Two situations can occur:

• br ̸=
∑m

j=1,j ̸=r αjbj : then the linear system has no solution, and the feasible region is
empty.

• br =
∑m

j=1,j ̸=r αjbj , in which case the linear system Ax = b is the same if the row r is
removed.

We can then examine all redundant rows in A, and either find one that shows the feasible region
is empty, or delete all of them until A has only linearly independent rows. We then let m the
number of independent rows.

88 CHAPTER 5. LINEAR OPTIMIZATION

An interesting property when considering optimization problems is the convexity of the feasible
set: if it is, some things are sometimes easier to show.

Definition 5.2 – Convex set

A set C is convex if, for any x0, x1 ∈ C, xλ = (1− λ)x0 + λx1 ∈ C.

Proposition 5.2 – Convexity of the solution set

The set of feasible solutions to a linear programming problem is convex.

Proof. Let x, y two feasible solutions for the linear program, i.e. they satisfy Ax = b, x ≥ 0 and
Ay = b, y ≥ 0. Consider z = (1 − λ)x + λy for 0 ≤ λ ≤ 1, then Az = (1 − λ)Ax + λAy = b, and
z ≥ 0.

Generally, in optimization problems, one must usually be careful about the optimum: is it only
a local or a global optimum? The linear property of the linear problems tells us that any local
optimum is a global optimum.

Lemma 5.1 – Local minima are global minima ([1, Lemma 1.4])

Any solution to a linear programming problem that is a local minimum solution is also a global
minimum solution.

Proof. Let p = (p1, . . . , pn, zp) a local minimum solution, where (p1, . . . , pn) is the vector that
attains the local minima zp. Assume that it is not a global minimum solution, then there is
another solution q = (q1, . . . , qn, zq) with zq < zp. By convexity of the feasible set, any point
x = (x1, . . . , xn, zx) = (1 − λ)p + λq, 0 ≤ λ ≤ 1 is feasible. Moreover, zx < zp for all 0 < λ < 1,
which contradicts the fact that p is a local minimum: if it was the case, all points in a neighborhood
of p would have a larger objective cost. Hence, zp can only be a global minimum.

Definition 5.3 – Corner (Vertex)

The point x ∈ Rn is called a corner if the following properties are fulfilled:

• x is feasible, i.e. Ax = b and x ≥ 0.

• x has at most m non-zero components.

• The columns in A corresponding to non-zero components in x are linearly independent.

A corner is often called a “basic feasible solution” in the literature since the columns in A
corresponding to the nonzero components form a basis.

Let I the set of indices such that xI ̸= 0. By definition of a corner, A•,I has linearly independent
columns but this matrix might not be invertible if |I| < m. However, one can always add to I some
indices for which xI = 0 and such that the new matrix A•,I is now invertible. It is possible because
rank(A) = m, which means there are exactly m columns in A that are linearly independent.

Therefore, up to a permutation of the columns in A, we have for any corner x,

A = (B,N), B ∈ Rm×m invertible, x =

(
xB
0

)
, xB ∈ Rm.

5.3 Simplex Method

Idea
We start at a corner and look for a neighboring corner with a smaller objective function. Then we
start over, continuing until we are stuck in a minimum.

5.3. SIMPLEX METHOD 89

Remark 5.7 – Historical note

The algorithm goes back to Dantzig who developed it in 1947, during his time working for the
US Air Force in project SCOOP (Scientific Computation Of Optimum Programs).

5.3.1 Derivation of the procedure

Let x be a corner, i.e. Ax = b and x ≥ 0, with at least n−m zero components. We have

b = Ax =
(
B N

)(xB
0

)
= BxB with B ∈ Rm×m invertible.

The cost function at the corner is cTx =
(
cTB cTN

)(xB
0

)
= cTBxB with cB ∈ Rm. We now seek

another corner with lower costs. Instead of the x defined above, we consider the costs at another
feasible point x′ = (x′B , x

′
N). Because Ax′ = b ⇐⇒ Bx′B +Nx′N = b ⇐⇒ x′B = B−1b− B−1Nx′N

and B−1b = xB , it follows that:

x′ =

(
x′B
x′N

)
=

(
xB −B−1Nx′N

x′N

)
.

The difference in the cost function is then:

cTx′−cTx = cTB(x
′
B−xB)+cTNx′N = −cTBB−1Nx′N+cTNx

′
N =

(
cTN − cTBB

−1N
)︸ ︷︷ ︸

=:rT∈R1,n−m

x′N =

n−m∑
k=1

rk ·x′N,k︸︷︷︸
≥0

.

If r ≥ 0, then the costs do not decrease for any choice of x′N ≥ 0, i.e. the corner x was already
optimal. Conversely, if the k-th component rk < 0, then the cost decreases if the k-th component
of x′N increases. We choose x′N in the direction of the component with the strongest decrease. If
ri = minj{rj < 0}, then we choose x′N = ξei, i.e. c

Tx′ − cTx = riξ < 0.
We choose ξ as large as possible because the larger ξ is, the stronger the cost reduction.

However, the constraints Ax′ = b, x′ ≥ 0 must still be satisfied. It holds:

0 ≤ x′B = xB −B−1Nx′N = xB − ξ B−1Nei︸ ︷︷ ︸
=:v∈Rm

.

There are two possible situations:

• v ≤ 0: Then x′B ≥ 0 for any choice of ξ > 0 is fulfilled. We then let ξ → ∞, thus the cost
function is unbounded, so there is no solution and we are done.

• ∃k : vk > 0: Then we choose

ξ := min
k:vk>0

{
(xB)k
vk

}
⇒ x′B = xB − vξ ≥ 0,

and (at least) one component of x′B is zero. Then it holds:

x′ =
(
x′1, . . . , x

′
k−1, 0, x

′
k+1, . . . , x

′
m, 0, . . . , 0, ξ, 0, . . . , 0

)T
,

where the ξ component is at the (m+i)-th index, because we have chosen x′N = ξei. We have
thus found a new point with lower costs. We then swap the zero value at position k with ξ,
and also swap the k-th and (m+ i)-th columns of A and cT . We denote by B′ ∈ Rm×m the
matrix formed of the m first columns of A after swapping the columns. Since B′ is invertible
(shown right after in Lemma 5.2), x′ is a corner and one can start again the iteration.

Lemma 5.2

The new “basis matrix” B′ corresponding to x′ has linearly independent columns.

90 CHAPTER 5. LINEAR OPTIMIZATION

Proof. (Taken from [2, Lemma 5.6.1]) Consider the matrix M := B−1B′. It is sufficient to show
that M has linearly independent columns to show that B′ has linearly independent columns (be-
causeM invertible ⇐⇒ B′ invertible). Note that the matrix B′ has the same columns as B except
for the column k, therefore B−1B′eℓ = eℓ for ℓ ̸= k. We deduce that M has linearly independent
columns if and only if Mk,k ̸= 0.

However, by construction of B′, its column k is the i-th column of N : Mek = B−1B′ek =
B−1Nei = −v. The index k has been chosen so that vk < 0, thus Mk,k = eTkMek = −vk > 0.

Lemma 5.2 shows that we indeed have a corner after each iteration of the simplex algorithm.

Simplex step (Phase II) Let x = (xB , 0)
T
with xB ∈ Rm, A =

(
B N

)
with B ∈ Rm×m invertible,

and cT =
(
cTB cTN

)
. Then we compute:

1. Set rT := cTN − cTBB
−1N .

2. If r ≥ 0 element-wise, then x is already optimal. Otherwise, look for ri := mink{rk}.

3. Set v := B−1Nei, where Nei is the i-th column of N .

4. If v ≤ 0 element-wise, then the cost function is unbounded, so there is no solution. Otherwise,

we determine j such that
xj

vj
= mink:vk>0

{
xk

vk

}
=: ξ ≥ 0.

5. We replace xk by xk − ξvk for k = 1, . . . ,m (except k = j, where we set xj := ξ: this
corresponds to swapping the j-th and (m + i)-th coordinates x). Then we swap the j-th
column with the (m+ i)-th column in the matrix A and in the vector cT and start again at
the first step.

Remark 5.8

Degenerate corners may occur, i.e. corners with more than n −m zero components. Then we
could obtain ξ = 0 (which indeed happens if xj = 0 and vj > 0). In this case, we would swap
a zero value with another zero, and the new corner would be the old one. We would be then
stuck. However, this generally does not occur in practice due to rounding errors.

Remark 5.9 – Numerical Linear Algebra of the Simplex step

1. We compute cTBB
−1N by solving the system of equations BTu = cB . This yields uT :=

cTBB
−1, then we compute r := cN − NTu. Similarly, we obtain v = B−1Nei by solving

Bv = Nei.

2. In the first step, we compute an LRa decomposition of B with PB = LR. Then we replace
the j-th column of B with the i-th column of N , i.e. B′ = BΓ with

Γeℓ = eℓ, ∀1 ≤ ℓ ≤ m, ℓ ̸= j, Γej = v = B−1Nei ∈ Rm.

We have vj > 0 by definition of j, which makes the columns of Γ all linearly independent.
Thus, Γ is invertible, and thus so is B′ (because B is invertible). We store the LR decom-
position of B for further steps. If there are more than m simplex steps, perform again a
LR decomposition on BΓ1 · · ·Γm = B̃.

3. We perform a column swap (possibly via a pointer field to avoid reconstructing a matrix
at every iteration), i.e.(

B N
)
=
(
Ai1 . . . Aim Aim+1 . . . Ain

)
and ik is the original position of the current column k. For the decomposition in one step,
we need (if PB = LR is already known) m2 + (m− j)m ≤ 2m2 operations.

aAlso called an LU decomposition.

5.3. SIMPLEX METHOD 91

So far, we have described how to move from one corner to the next. It is still necessary to
clarify how to determine an initial corner.

Idea (Initial Corner search)
We introduce m new variables: xn+1, . . . , xn+m and consider the vector x̄ = (x1, . . . , xn+m). Fur-
thermore, we set c̄T :=

(
0 1T

)
with 1T = (1, . . . , 1) ∈ Rm and Ā :=

(
A Im

)
. We assume

without loss of generality that b ≥ 0: if this is not the case, we multiply the bad component and the
associated line in A by (−1).

Remark 5.10 – Auxiliary Problem (Phase I)

We now want to solve the auxiliary problem Āx̄ = b with x̄ ≥ 0 under c̄T x̄ = min!. A corner for
the auxiliary problem is x̄ = (0, b): it solves Āx̄ = b, it is nonnegative since we assumed b ≥ 0, it
has at most m nonzero components, and the identity matrix obviously has linearly independent
columns.
If we assume the initial problem to be feasible, one can find an optimal solution among the
corners of the auxiliary problem by using Phase II, and for such optimum we have xn+1 = · · · =
xn+m = 0. Thus,

• Āx̄ = Ax = b

• x̄ ≥ 0 =⇒ x ≥ 0.

Moreover, since this optimum is a corner for the auxiliary problem, x̄ has at most m nonzero
components and the columns in Ā corresponding to those nonzero components are linearly
independent. But owing to xn+1 = · · · = xn+m = 0, we deduce (up to a permutation) x = (xB , 0)
with xB ∈ Rm and the columns in A corresponding to xB are linearly independent.
Finally, x is a corner for the initial problem.

With this, we have finished the description of the Simplex Algorithm. We now only need to
show that the minima actually occur at the corners, which we need for the construction of the
initial corner. We will prove this with the algorithm just constructed, but without creating a
circular reference with the auxiliary problem.

Theorem 5.1 – Minima at corners

Assume the linear optimization problem Ax = b, x ≥ 0 and cTx = min! has a solution. Then at
least one corner gives the solution.

Proof. (Adapted from [2, Theorem 4.2.3]). Let x = (xB , xN) in the feasible region, i.e. Ax = b
and x ≥ 0. Consider all feasible solutions x′ such that cTx′ ≤ cTx, and among them choose one
that has the maximal number of zero components. To show that x′ is a corner, we still need to
show that the columns in A associated to nonzero components of x′ are linearly independent.

Let J = {j = 1, . . . , n : x′j > 0}, and suppose the columns of AJ are linearly dependent. Then,
there is a nonzero vector v such that AJv = 0. Let w the zero-padded vector such that wJ = ±v,
we have Aw = ±AJv = 0. The sign can be determined such that w satisfies

(i) cTw ≤ 0.

(ii) There is j ∈ J with wj < 0.

Indeed, if cTw = 0, (i) holds and (ii) can be obtained by eventually changing the sign of w (note
that we don’t have the restriction w ≥ 0 since it is not required to be a feasible vector). Assume
now that cTw ̸= 0, and again by an eventual change of sign we get (i). But (ii) may fail in this
case, which means that w ≥ 0. Let y(t) = x′ + tw for t ≥ 0, all such y(t) are feasible and the
objective function tends to −∞ as t → ∞, i.e. the problem is unbounded. So, by assuming the
linear problem has a solution, we can indeed choose the sign in w such that (i) and (ii) hold.

Let us go back to showing that the columns of AJ are linearly independent, by assuming they
are not. We have Ay(t) = b for all t ≥ 0. For t = 0, the vector y(0) = x′ has all components from

92 CHAPTER 5. LINEAR OPTIMIZATION

J positive and all others zero (by definition of J). For any j = 1, . . . , n, we have yj(t) = x′j + twj .
For j such that x′j = 0, wj is defined such that wj = 0 and thus yj(t) = 0 for all t. For j ∈ J
such that wj > 0, yj(t) ≥ 0 for all j. For j ∈ J such that wj < 0, yj(t) is a decreasing function
of t. Therefore, there is a t∗ such that yj(t

∗) = 0 for some j ∈ J such that wj < 0. Morevoer,
cT y(t∗) = cTx′ + tcTw ≤ cTx. This vector y(t∗) is feasible and has more zero components than
x′. This contradicts our assumption that x′ has the largest number of zero components among
all feasible solutions with better cost than x. Finally, the columns in A associated to nonzero
components of x′ are linearly independent.

Note that Theorem 5.1 does not say there is a unique solution that is a corner, simply that
among all solutions in the feasible set at least one is a corner.

Remark 5.11

If a solution exists, then the simplex method finds it after a finite number of steps, because there
are also only a finite number of corners. The expected value is 3m

2 steps; in the worst case, all
corners must be traversed, i.e. O(2m−1) steps are necessary.

5.4 Duality

As seen in the second section, there is a linear program that we would like to call the “primal
problem” in the future. Here we had the tableau:

A b

cT
,

which corresponds to various problems (called the Primal problems):

(a) Ax ≤ b and cTx = min!

(b) Ax ≤ b, x ≥ 0 and cTx = min!

(c) Ax = b, x ≥ 0 and cTx = min!

Idea
We would like to obtain a priori bounds on the optimal cost of the primal problem, without having
to solve it first.

Let us focus on the problem type (b) for this explanation. One way of obtaining a lower bound
is to note that for d ≤ c, dTx ≤ cTx because x ≥ 0. For any d ∈ Rn such that d ≤ c, dTx is a
“lower bound” for the objective of the primal problem. However, this “lower bound” still depends
on x, hence the quotes on “lower bound”. In order to obtain a lower bound on dTx, we can use
the condition of the primal problem: for any y ≥ 0,

yTAx ≤ yT b = bT y.

If we let d = AT y, we get dTx ≤ bT y. The good thing is that the bound does not depend on x
anymore, the bad thing is that the bound is an upper bound instead of a lower bound. To fix this,
it suffices to consider y ≤ 0 instead of y ≥ 0, and we obtain dTx ≥ bT y for any y ≤ 0. Finally, we
have cTx ≥ bT y, for any y such that y ≤ 0 and d = AT y ≤ c. We can maximize bT y under the
same conditions and get a lower bound for the primal problem. This leads to the so-called “Dual
problem”:

(b*)

∣∣∣∣∣∣∣
max bT y

s.t. AT y ≤ c

y ≤ 0.

For problem type (a), the same holds except that we don’t know the sign of x so we can only
look for a lower bound to cTx under the form dTx with d = c. Another way of saying this is that

5.4. DUALITY 93

we are looking for a lower bound that holds for both xj ≥ 0 (i.e. dj ≤ cj) and xj ≤ 0 (i.e. dj ≥ cj),
because the sign of xj is yet unknown. We obtain

(a*)

∣∣∣∣∣∣∣
max bT y

s.t. AT y = c

y ≤ 0.

For problem type (c), the lower bound is of the form dTx ≤ cTx for d ≤ c, and yTAx = bT y
for all y ∈ Rm. By maximizing this lower bound with respect to y, we get

(c*)

∣∣∣∣∣∣∣
max bT y

s.t. AT y ≤ c

y ∈ Rm.

Note that we wrote y ∈ Rm here to emphasize the fact that there is no sign condition on y, we
will generally not write this line.

Another way of obtaining the three dual problems is to obtain one of them (e.g. (b*)), and
then to use the equivalence between (a) or (c) to transform them into (b). Using the dual problem
of (b), namely (b*), we can obtain the dual problems (a*) and (c*).

Definition 5.4 – Dual Problem

We now consider the dual problem:
AT c

bT

Then we have the various problems:

(a*) AT y = c, y ≤ 0 and bT y = max!

(b*) AT y ≤ c, y ≤ 0 and bT y = max!

(c*) AT y ≤ c, bT y = max!

We see that, for example, (a*) is equivalent to (c), and of course (a*), (b*) and (c*) are
equivalent to each other. We will work with problem (c*) in the future, because we were concerned
with problem type (c) for the primal problem.

Definition 5.5 – Feasible region

We say x ∈ Rn is feasible (for the primal problem (c)) if Ax = b and x ≥ 0, and y ∈ Rm is
feasible (for the dual problem (c*)) if AT y ≤ c.

The statement of the following theorem is very clear if one understands the above construction
of the dual problem:

Theorem 5.2 – Weak duality

For all feasible x and y, it holds that:
cTx ≥ yT b.

Proof. Since x is feasible, Ax = b and x ≥ 0, and since y is feasible, AT y ≤ c. Thus, it holds that:

yT b = yT (Ax) = (yTA)x ≤ cTx.

94 CHAPTER 5. LINEAR OPTIMIZATION

Corollary 5.1 – Optimal solutions

If cTx = yT b for feasible x and y, then x and y are already optimal.

Proof. For all feasible η ∈ Rm (for the dual problem), it holds that ηT b ≤ cTx = yT b. Then
yT b = max!, i.e. y is optimal for the dual problem. Analogously, we obtain for all feasible ζ ∈ Rn

(for the primal problem) that cT ζ ≥ yT b = cTx, which means x is optimal.

Corollary 5.2 – Unbounded =⇒ *-unfeasible

If the infimum in the primal problem is −∞, then the feasible region of the dual problem is
empty. Conversely, if the supremum of the dual problem is +∞, then the feasible region of the
primal problem is empty.

Proof. According to weak duality, it holds that −∞ = inf{cTx : x feasible} ≥ yT b, ∀y feasible.
But such a y cannot exist. Analogously, we obtain +∞ ≤ cTx, ∀x feasible. Thus, there is no
feasible x.

Theorem 5.3 – Duality theorem

Let x ∈ Rn and y ∈ Rm be feasible. Then it holds that:

x, y optimal ⇐⇒ cTx = yT b.

Proof. The direction ”⇐” has already been shown. We must now show under the assumption that
x is optimal that there exists a feasible y with cTx = yT b. It would work as well if one assumed
y optimal and looked for a feasible x s.t. cTx = yT b. Since x is optimal, we can assume it is a
corner by Theorem 5.1 We use the simplex method for A = (B,N), cT = (cTB , c

T
N), x = (xB , 0),

and b = Ax = BxB . Then it holds that cTx = cTBxB = cTBB
−1b = yT b for yT := cTBB

−1 ∈ Rm.
We must now show that this defined y is feasible. Note that

x =

(
xB
0

)
optimal ⇐⇒ rT := cTN − cTBB

−1N ≥ 0,

hence
yTA = cTBB

−1A = cTBB
−1
(
B N

)
=
(
cTB cTBB

−1N
)
.

Since rT ≥ 0, we finally obtain:
yTA ≤

(
cTB cTN

)
= cT ,

thus y is feasible.

Corollary 5.3

If the primal problem has a solution, then the dual problem also has a solution. In particular,
the minimum of the primal problem is the maximum of the dual problem.

Remark 5.12

The simplex method always computes the solution of the dual problem automatically since
BT y = cB must be solved anyway, see Remark 5.9.

Corollary 5.4 – Optimality criterion

Let x, y be feasible. Then x and y are optimal if and only if for all j = 1, . . . , n it holds that
xj = 0 or (AT y)j = cj .

Proof. ⇐: Let (yTA)j = cTj for xj ̸= 0. Let J = {j = 1, . . . , n : xj ̸= 0}. Since x and y are

5.4. DUALITY 95

feasible, by Theorem 5.3 we need to check

cTx = yT b ⇐⇒ cTx = yTAx ⇐⇒ cTx =

n∑
i=1

(yTA)ixi ⇐⇒ cTJ xJ =
∑
i∈J

(yTA)ixi.

By definition of y, we have (yTA)i = ci for all i ∈ J , hence the last equality holds and x and y are
optimal.
⇒: Let x, y be optimal. Then it holds that:

yT b = cTx ⇒
(
cT − yTA

)
x = 0.

Since y is feasible, we have cT − yTA ≥ 0. Since x is feasible, we have x ≥ 0. Hence
(
cT − yTA

)
x

is a sum of nonnegative terms, and it is zero if and only if all the summands are zero. Thus, it
holds for every j that (cT − yTA)j = 0 or xj = 0.

Example 5.2

In a free market economy, it is about equilibrium conditions. To produce the products j =
1, . . . , n, the quantity aij of raw materials i = 1, . . . ,m is required. The value of product j is cj
and the quantity produced of j is xj ≥ 0. The price of raw material i is yi ≥ 0 and the quantity
of raw material i is bi. Thus, we obtain as a constraint Ax ≤ b, i.e.∑

j

aijxj = Ax ≤ b ∀i.

The revenue of the company is ∑
j

cjxj = cTx.

and the expenses ∑
j

(∑
i

aijyi

)
xj = yTAx.

Thus, the profit is then cTx − yTAx = (cT − yTA)x. This should be maximized. From the
perspective of the raw material suppliers, it follows that as long as the company’s profit is
positive, the prices should be increased (because the company is not making a loss, it will
continue to buy). Thus, we obtain as a constraint yTA ≤ cT with y ≥ 0 for the dual problem of
the raw material suppliers. These two perspectives are reflected in the doctrines of the companies
and suppliers:

1. If (cT − yTA)j < 0, then set xj := 0. Here, the costs for producing product j are greater
than the sales revenue, so production of this product is stopped.

2. If (Ax − b)i < 0, then set yi := 0. Here, the supply for raw material i is greater than the
demand, so this raw material is available for free.

With the duality theorem, it holds that: cTx = max and Ax ≤ b with x ≥ 0 as well as bT y = min
and AT y ≥ c with y ≥ 0. We interpret this as the value creation cTx being maximized in the
free market economy.

Remark 5.13 – Effects of Small Perturbations

We have cTx = min and Ax = b with x ≥ 0 given. We want to know how the minimal costs
cTx change if we change b. We see that if instead of b, we now have b+∆b with ∆b “sufficiently
small”, then x becomes x +∆x. In the dual problem AT y ≤ c, (b +∆b)T y = max, the feasible
region does not change, so the solution y of the new dual problem remains in the same corner if
∆b is small enough. We now consider the changes in costs and use the duality theorem:

cT (x+∆x)− cTx = (b+∆b)T y − bT y = (∆b)T y

96 CHAPTER 5. LINEAR OPTIMIZATION

We interpret the dual variable y as the change in costs divided by the change in supply. In terms
(where y was the price) of the above example, this results in:

Price =
Change in costs

Change in supply

5.4.1 Preparation for Karmarkar, Projection, Scaling

Motivation
We will now prepare the algorithm of Karmarkar in this and the following sections, which was
published in 1984 in the article ”A new polynomial-time algorithm for linear programming”. In
the simplex method, we had an exponential runtime in the worst case, while in this algorithm we
always have a polynomial runtime.

In this section, we will set the foundations of the algorithm. We seek x with Ax = b, x ≥ 0 and
cTx = min!. Let x0 be given in the interior of the feasible region (i.e. xj > 0 for j = 1, . . . , n).
We now seek a feasible x1 := x0 +∆x with lower costs. It requires two ingredients, the projection
and the scaling, which we discuss now.

Idea (Projection)
We want to choose ∆x in the direction of the steepest descent of the cost function, i.e. ∆x should
be a negative multiple of c, because it holds that:

cT∆x = ∥cT ∥ · ∥∆x∥ cos∠(c,∆x)

and it is the smallest when the cosine is -1, i.e. when ∆x = −c. However, we still need the feasibility
of x1, in particular Ax1 = b, i.e. it must hold that A∆x = 0, so ∆x ∈ Ker(A). Therefore, ∆x
cannot generally be chosen as above, and it must be restricted to Ker(A), i.e.:

∆x := −ξv

where ξ is a (yet to be determined) scaling factor and v is the orthogonal projection of c onto
Ker(A), i.e. v ∈ Ker(A) and v − c ⊥ Ker(A). In particular, v − c ∈ Ker(A)⊥ = Image(AT) and
there exists λ ∈ Rm with v − c = −ATλ. In matrix form, this means:(

In AT

A 0

)(
v

λ

)
=

(
c

0

)
Without loss of generality, we can assume that the rows of the matrix A are linearly independent
(otherwise, we omit linearly dependent rows that only provide redundant information for our prob-
lem, see Remark 5.6). Thus, v and λ are always uniquely determined. We now consider the choice
of the scaling factor ξ. We must not go too far here, otherwise we would fall out of the feasible
region. We first note that it holds that c = v +ATλ. Thus, the change in costs, since v ∈ Ker(A),
is:

cT∆x =
(
v +ATλ

)T
(−ξv) = −ξvT v − ξλTAv = −ξ∥v∥2

We have 3 possibilities for what v can be:

1. v = 0: Then there exists a µ such that c = ATµ, and cTx = µTAx = µT b for all feasible x.
Thus, all feasible x are optimal and we are done.

2. For all ξ, x1 = x0 − ξv ≥ 0: Then the cost function is unbounded within the feasible region,
so there is no minimum and we are done.

3. There exists a ξ∗ > 0 for which x0 − ξ∗v is on the boundary of the feasible region, i.e. we
have x0 − ξ∗v ≥ 0 and there exists a j with (x0 − ξ∗v)j = 0.

We then choose (analogous to the simplex method)

ξ∗ := min
j:vj>0

x0j
vj

5.4. DUALITY 97

However, we stop shortly before the boundary in order to remain within the feasible set and be able
to apply the same idea iteratively, i.e. for an α < 1, we set

x1 := x0 − αξ∗v.

From the expression of ξ∗ one can see that the further away x0 is from the boundary, the larger
the step. One could apply iteratively the projection step only, but then the scaling ξ∗ could quickly
become very small and not yield a large improvement for the cost. One idea of Karmarkar consists
in distorting the feasible set before applying the projection, so that x1 is closer to the center of
the new simplex. Because we are closer to the center, the step can be large and the improvement
with respect to the cost is large. Karmarkar’s algorithm will proceed in three main steps: get the
new simplex so that the current iterate is closer to the center, apply the projection step to get a
new iterate, and transform back the new iterate to the original coordinates.

Visual explanation with Figure 5.2: if the lines are in the opposite direction of c, the starting
point x2 can improve just a little bit before reaching the boundary, while a point at the center can
improve much more.

Figure 5.2: Figure taken from https://ise.ncsu.edu/wp-content/uploads/sites/9/2021/07/

LPchapter-6.pdf

For the sake of presentation, we assume now that the initial iterate x0 is close to the center
of the original simplex. Moreover, the first application of the scaling idea does nothing since we
would transform x0 to x0. So for the explanation of the scaling idea, assume that we already have
an iterate x1 (obtained via the projection idea).

Idea (Scaling)
We choose a diagonal matrix D = diag(d1, . . . , dn) such that Dx1 = x0, i.e.

dj :=
x0j
x1j

> 0.

This matrix transforms x1 into x0, i.e. brings x1 back to x0, the center of the simplex. We now
write the initial problem Ax = b, x ≥ 0 and cTx = min! in the new coordinates x̃ := Dx:

AD−1x̃ = b, x̃ ≥ 0, cTD−1x̃ = min!.

We apply the projection step to the scaled problem with the scaled initial value x̃1 = Dx1 = x0:(
I D−1AT

AD−1 0

)(
ṽ

λ̃

)
=

(
D−1c
0

)
.

One can rewrite this system as(
D−1 0
0 I

)(
D2 AT

A 0

)(
D−1 0
0 I

)(
ṽ

λ̃

)
=

(
D−1c
0

)
⇐⇒

(
D2 AT

A 0

)(
v
λ

)
=

(
c
0

)
,

where v = D−1ṽ and λ̃ = λ.
Another way of understanding this new system is the following: since ṽ corresponds to the scaled

coordinates, one can define v (its corresponding vector in the initial coordinates) by ṽ := Dv. The
vector λ̃ is only there to specify that c− v ∈ Image(AT), so its scaling doesn’t really matter.

https://ise.ncsu.edu/wp-content/uploads/sites/9/2021/07/LPchapter-6.pdf
https://ise.ncsu.edu/wp-content/uploads/sites/9/2021/07/LPchapter-6.pdf

98 CHAPTER 5. LINEAR OPTIMIZATION

We no longer have an orthogonal projection here, but a weighted projection. More precisely,
this is the orthogonal projection of the induced scalar product of D2, i.e.

⟨v, w⟩ = vTD2w = ṽT w̃.

Note that the v obtained with this weighted projection is different than the one we would obtain
from the projection step alone, underlining the importance of rescaling. Then we set, according to
the projection idea,

x̃2 := x̃1 − αξ∗ṽ, ξ∗ := min
j:vj>0

x1j
vj
.

We recall that the step ξ∗ is chosen so that the new iterate obtained from the current one in the
original coordinates remains within the inside of the feasible set. After going back to the initial
coordinates, we get

x2 = x1 − αξ∗v.

For the next steps, we choose a diagonal matrix D with Dx2 = x0, perform the projection, etc.

Scaling algorithm Let x0 be given in the interior of the feasible region. For k = 0, 1, . . ., we then
perform the following steps:

1. For the matrix M := diag(d21, . . . , d
2
n) with dj :=

x0
j

xk
j

> 0, solve the system of equations(
M AT

A 0

)(
v
λ

)
=

(
c
0

)
2. If vj ≤ 0 for all j, then there is no minimum and we are done. Otherwise, we choose

ξ := min
j:vj>0

xkj
vj
.

and set ∆x := αξv for a suitable α < 1 close to one. Then

xk+1 := xk −∆x.

By construction, the costs decrease at each step.

Remark 5.14 – Linear algebra of the algorithm

For the first step, we have three possibilities at the linear algebra level:

1. We can perform a Gaussian elimination of the matrix

(
M AT

A 0

)
and obtain as the solution

for λ the system of equations:

AM−1ATλ = AM−1c

and for v we get:
Mv = c−ATλ,

thus the system of equations is decoupled. For the symmetric and positive definite matrix
AM−1AT , we can perform a Cholesky decomposition LLT .

2. We can also perform a QR decomposition for AM−1AT = AD−1D−1AT in the sense that

D−1AT = Q

(
R

0

)
,

5.5. KARMARKAR’S ALGORITHM 99

where Q is orthogonal and R is an invertible triangular matrix. Then it holds that:

AM−1AT =
(
RT 0

)
QTQ

(
R
0

)
= RTR.

Then RTRλ = AM−1c is to be solved.

3. We can use iterative methods, such as the CG method, to compute the first step. Since
A is usually sparsely populated (and M or M−1 anyway), solving by the CG method is
recommended. This way, no non-zero elements are to be stored.

Remark 5.15 – Finding the starting value

We now introduce an additional column in A, i.e.

Â :=
(
A b−Ae

)
with e :=

1
...
1

 ∈ Rn and ê :=

(
e
1

)
∈ Rn+1

Then it holds that:
Âê = Ae+ b−Ae = b

We now want to reduce this to a problem of the form Âx̂ = b, x̂ ≥ 0, ĉT x̂ = min!. For this, we
choose:

ĉ :=

(
c

cn+1

)
with cn+1 large enough.

Then the last component of x̂ would be zero to compensate for the size of cn+1, with which we
can forget the last component again. As the starting value for the modified problem, we choose
x0 := ê as the starting value, which is in the interior of the feasible region.

Remark 5.16 – Termination criterion

If ∆x is “small”, it means we are near a corner and we can jump to the nearest corner from
the currently chosen xk. Then we check the corner for optimality with one step of the simplex
algorithm.

5.5 Karmarkar’s algorithm

If the optimization problem is in a particular form, Karmarkar’s algorithm is simpler to use. This
special formulation is the following:

1. Ax = 0 with A ∈ Rn×n and x ∈ Rn

2.
∑n

i=1 xi = 1

3. x ≥ 0

4. cTx = min with c ∈ Rn, where the minimum is 0.

5. e := 1
n

1
...
1

 is feasible.

Remark 5.17 – Achieving the special formulation

We are currently solving the problem cTx = min!, Ax = b, x ≥ 0. We assume that there is a
constant σ > 0 such that, for x∗ optimal,

∑n
i=1 x

∗
i < (n+ 2)σ.

We start by rescaling the problem: let x̃ = 1
σx, we are now solving σcT x̃ = min! under the

100 CHAPTER 5. LINEAR OPTIMIZATION

constraints Ax̃ = 1
σ b, x̃ ≥ 0.

Introduce a variable y with the condition y = 1, then the constraint can be rewritten as Ax̃ −
1
σ by = 0, y = 1, x̃, y ≥ 0.
Finally introduce z, the slack variable for the inequality

∑n
i=1 x̃i < n + 2: z must then satisfy∑n

i=1 x̃i + z = n+ 2, or written differently,
∑n

i=1 x̃i + y + z = n+ 3.
The optimization problem is now σcT x̃ = min! under the constraints Ax̃ − 1

σ by = 0, y = 1,
x̃, y, z ≥ 0,

∑n
i=1 x̃i + y + z = n+ 3. We can rescale the last equation by n+ 3.

In order to have e = 1
n (1, . . . , 1) a feasible solution, we introduce an additional artificial variable

w, and assign a large cost coefficient M to it. The aim is to have w = 0 at optimality, but a
feasible vector might have w ̸= 0. The modified optimization problem is now

Minimize σcT x̃+Mw

under the constraints Ax̃− 1

σ
by +

(
1

σ
b−Ae

)
w = 0

n∑
i=1

xi + y + z + w = 1

x̃, y, z, w ≥ 0.

Now, e = 1
n+3 (1, . . . , 1) ∈ Rn+3 is feasible.

In order to meet the final requirement, namely the objective being zero at optimality, it “suffices”
to modify the cost into c̃ = c−κe, where κ is the optimal cost. In practice though, one does not
know κ but one can use the cost of the dual problem as a lower bound of cTx, and update it at
every iteration.

Motivation
In Karmarkar’s algorithm, we consider a transformation of the feasible region such that we trans-
form the simplex into another simplex. This is done by a nonlinear mapping (scaling step detailed
previously). In the scaling algorithm, the triangle was rotated and distorted. This will no longer
happen here.

Notation 5.2

We denote by ∆ the feasible region, i.e.

∆ :=

{
x ∈ Rn :

n∑
i=1

xi = 1, xi ≥ 0

}
.

Construction (Projective transformation of the simplex)
Let a be an interior point in ∆, i.e.

∑
ai = 1 and ai > 0. We now consider the mapping

Ta : ∆ → ∆ with

x 7→ Dx∑n
i=1

xi

ai

= Ta(x) with D = diag

(
1

ai

)
.

The mapping Ta has the following properties:

1. Ta(a) = e with e = 1
n (1, . . . , 1).

2. Ta is well-defined and bijective with the inverse mapping

T−1
a (x̃) =

D−1x̃∑n
i=1 aix̃i

.

3. Ta(∂∆) = ∂∆.

4. If we write x̃ = Ta(x), then it holds that:

(a) Ax = 0 ⇐⇒ AD−1x̃ = 0,

5.6. CONVERGENCE OF KARMARKAR’S ALGORITHM 101

(b) cTx = 0 ⇐⇒ cTD−1x̃ = 0,

(c) cTx > 0 ⇐⇒ cTD−1x̃ > 0.

Construction (Iteration of Karmarkar)
We denote xk+1 := K(xk), the mapping K uses the two steps explained previously: scaling and
projection. We recall that the scaling is done to put the current iterate closer to the center of the
simplex, in this case e. The projection step evolves the current iterate in the modified coordinates
along ProjKerAc̃. Finally the new iterate in the modified coordinates is brought back to the initial
coordinates.

xk x̃k = e

xk+1 = e+∆x̃xk+1

Txk

(*)

T−1
xk

In step (∗), we solve the problem cTD−1x̃ = min!, AD−1x̃ = 0,
∑
x̃i = 1 and x̃ ≥ 0. We choose ∆x̃

in the negative direction of the orthogonal projection of c̃ = D−1c onto KerB with B :=

(
AD−1

1T

)
,

and denote this projection by P . The row 1T is added to take into account the constraint
∑
x̃i = 1.

We then solve P c̃ = ṽ with (
I BT

B 0

)(
ṽ
λ

)
=

(
c̃
0

)
We then set

∆x̃ := −αr P c̃

∥P c̃∥
so: x̃k+1 = e− αr

P c̃

∥P c̃∥

with a parameter 0 < α < 1 and where r := 1√
n(n−1)

is the radius of the largest circle in the

simplex ∆.

Remark

The quantity P c̃ plays the role of v earlier, and r
∥P c̃∥ plays the role of ξ∗ earlier.

We choose x0 := e and for k = 0, 1, 2, . . ., we compute xk+1 = K(xk) until the termination criterion
is met.

5.6 Convergence of Karmarkar’s algorithm

Motivation
We now assume the assumptions as in the previous section and will show the convergence of the
algorithm, whose effort grows polynomially.

Theorem 5.4 – Convergence of Karmarkar’s algorithm

Let x0 = e and let xk+1 = K(xk) be the sequence defined by Karmarkar’s algorithm (with

α = 1
2

√
n−1
n). If the problem has a solution (i.e. if there exists a feasible x with cTx = 0), then,

for q ∈ N large enough, after

k ≥ 10

3
n(log n+ 0.7q)

102 CHAPTER 5. LINEAR OPTIMIZATION

iterations, it holds that the reduction of the objective function satisfies:

cTxk

cTx0
≤ 2−q.

Proof. We need some auxiliary results to prove this.

Definition 5.6 – Potential function

Let ∆ be the simplex of the feasible region. Then we define the potential function:

φ :
◦
∆ → R : φ(x) :=

n∑
i=1

log
cTx

xi
= n log cTx−

n∑
i=1

log xi,

where
◦
∆ denotes the interior of the simplex ∆.

Lemma 5.3

Let x0 = e and let xk+1 = K(xk) be the sequence defined by Karmarkar’s algorithm (with

α = 1
2

√
n−1
n). If the problem has a solution, then it holds for all k ∈ N that:

φ(xk+1) ≤ φ(xk)− δ

with δ > 0.3.

Proof. We need some properties of the potential function to prove this.

Proposition 5.3 – Properties of the potential function

1. If x∗ is a feasible solution of the problem cTx = min!, then for a sequence x→ x∗ along a

line in
◦
∆, it holds that:

φ(x) → −∞.

2. If x̄ ∈ ∂∆ with cT x̄ > 0 (i.e. not a solution), then φ(x) → +∞ for x → x̄ along a line in
◦
∆.

3. The potential function is invariant under projective transformations Ta for a ∈
◦
∆.

Proof. 1. Let x = x∗ + tu with ui > 0 for every i with x∗i = 0. For t small enough, we have

x ∈
◦
∆,

0 ≥ cTx = tcTu.

The equality only happens in the case where all points in ∆ are optimal, which means
φ = −∞ everywhere on ∆ and we’re done. Apart from this trivial situation, we know that
the optimum must occur on corners, and thus a feasible point in the interior of the simplex
has a suboptimal cost cTx > 0. We compute, in the non-trivial case,

φ(x∗ + tu) =

n∑
i=1

log

(
tcTu

x∗i + tui

)
.

The argument of the logarithm is independent of t if x∗i = 0. If x∗i > 0, the argument of the
logarithm goes to zero as t↘ 0. But at least one x∗i must be positive since x∗ is normalized.
Thus, the argument goes to zero and the function thus goes to −∞.

2. We write analogously to above x = x̄+ tu and set ui > 0 if x̄i = 0. For t↘ 0 small enough,

5.6. CONVERGENCE OF KARMARKAR’S ALGORITHM 103

x ∈
◦
∆, and we compute:

φ(x̄+ tu) =

n∑
i=1

log

(
cT x̄+ tcTu

x̄i + tui

)
.

Since x̄ ∈ ∂∆, there exists an i with x̄i = 0. The numerator is strictly positive since cT x̄ > 0,
so as t↘ 0 the function φ(x̄+ tu) → +∞.

3. For x̃ = Ta(x), i.e.

x = T−1
a (x̃) =

D−1x̃∑n
i=1 aix̃i

with D = diag
(

1
ai

)
, we define φ̃ by:

φ̃(x̃) = φ(x)

Thus, we compute:

φ̃(x̃) = n log

(
cT

D−1x̃∑n
i=1 aix̃i

)
−

n∑
i=1

log

(
aix̃i∑n

j=1 aj x̃j

)

For c̃T := cTD−1, we thus obtain (with the logarithm rules):

φ̃(x̃) = n log c̃T x̃−
n∑

i=1

log x̃i −
n∑

i=1

log ai︸ ︷︷ ︸
= const

.

Thus, all properties hold.

We will now show with the next lemma that the projection step in Karmarkar’s algorithm can
be interpreted as minimization over a circle.

Lemma 5.4

It holds that:

min
∥x−e∥≤η∑

i xi=1
Ax=0

cTx = cT
(
e− η

Pc

∥Pc∥

)

where P is the orthogonal projection onto Ker

(
A
1T

)
.

Proof. We find a lower bound for cT (x− e) and show that it is attained. First of all, since x and
e are feasible, we have x = Px and e = Pe. Thus,

cT (x− e) = cTP (x− e) = (Pc)T (x− e).

By Cauchy-Schwarz:
(Pc)T (x− e) ≥ −∥Pc∥∥x− e∥ ≥ −η∥Pc∥.

Equality holds if Pc
∥Pc∥ = − x−e

∥x−e∥ and ∥x− e∥ = η. This is exactly the case when x− e = −η Pc
∥Pc∥ .

Thus, the desired equality already holds.

Proof of lemma 5.3. 1. We must show that, with α = 1
2

√
(n− 1)/n, φ(xk+1) ≤ φ(xk)− δ with

δ > 0.3. We already know that

φ(xk+1) = φ̃(x̃k+1) = φ̃(e− αrd̃),

104 CHAPTER 5. LINEAR OPTIMIZATION

with d̃ = P c̃
∥P c̃∥ and r = 1√

n(n−1)
. The product αr has the role of η previously. It holds that:

φ(xk) = φ̃(x̃k) = φ̃(e).

We know that φ̃ has the same form as φ, but with c̃ instead of c. We leave out the tilde in
the following calculation to simplify the notation, but we calculate in the tilde (transformed)
variables.

2. We must now show that it holds that:

φ(e− ηd) ≤ φ(e)− δ

with x(α) := e − ηd, d := Pc
∥Pc∥ , η = αr, and P is the orthogonal projection onto Ker

(
A
1T

)
.

In particular, Ax(α) = 0 and
∑

i x(α)i = 1. Now, consider the difference

φ(x(α))− φ(e) = ψ(α)− ψ(0) + n
cT (x(α)− e)

cT e
= n

cT (x(α)− e)

cT e
+

∫ α

0

ψ′(β)dβ,

where ψ(α) := φ(x(α))−n cT x(α)
cT e

. We estimate cT (x(α)−e)
cT e

and ψ(α)−ψ(0), and then combine
the estimates to obtain the result.

3. First estimate. We have x(α)− e = ηd = αrd, which implies ∥x(α)− e∥ = η. By definition,
x(α) minimizes the cost cT y on the set of y such that ∥y − e∥ ≤ αr = η, Ay = 0 and∑

i yi = 1. Thus, if one considers the line from e to the optimum x∗, it intersects with the
circle ∥y − e∥ = η at a point x′ which satisfies (by the previous lemma) cTx′ ≥ cTx(α). One

can write x′ = e + η(x∗ − e), so cT (x′−e)
cT (x∗−e)

= η. Finally, using the optimality of x∗ and in

particular that cTx∗ = 0,

cT (x(α)− e)

cT e
=
cT (x(α)− e)

cT (e− x∗)
≤ cT (x′ − e)

cT (e− x∗)
= − cT (x′ − e)

cT (x∗ − e)
= −η.

4. Second estimate. We first investigate the auxiliary function ψ defined above, for which it
holds that:

ψ′(α) = φ′(x(α))x′(α)− n

cT e
cTx′(α)

Since x(α) = e− αrd, it follows that x′(α) = −rd and thus we obtain with the definition of
φ:

ψ′(α) = nr

(
1

cT e
− 1

cTx(α)

)
︸ ︷︷ ︸

≤0

cT d+ r

n∑
i=1

di
xi(α)

.

Since d = Pc
∥Pc∥ and P is a projection, it holds that cTPc = cTP 2c = cTPTPc = (Pc)T (Pc) ≥

0, so cT d ≥ 0. Furthermore, it holds that:

r

n∑
i=1

di
xi(α)

= r

n∑
i=1

di
1
n − αrdi

= nr

n∑
i=1

di
1− αrndi

.

Since
∑

i di = 0, it follows that:

r

n∑
i=1

di
xi(α)

= nr

n∑
i=1

di

(
1

1− αrndi
− 1

)
= nr

n∑
i=1

di
αrndi

1− αnrdi
= α(nr)2

n∑
i=1

d2i
1− αrndi

.

Since
∑n

i=1 d
2
i = ∥d∥2 = 1, we obtain |di| ≤ 1 for all i and thus 1

1−αrndi
≤ 1

1−αrn . It finally
holds that:

r

n∑
i=1

di
xi(α)

≤ α(rn)2

1− αrn
.

With the above, it finally holds that:

ψ(α)− ψ(0) ≤
∫ α

0

β(rn)2

1− βrn
dβ = −αrn− log(1− αrn)

5.6. CONVERGENCE OF KARMARKAR’S ALGORITHM 105

5. We now put both estimates together again and obtain in total:

φ(x(α))− φ(e) ≤ −2αrn− log(1− αrn).

The right side becomes minimal for αrn = 1
2 . Since rn =

√
n

n−1 , we must set

α :=
1

2

√
n− 1

n
,

and for this α, it finally holds that:

φ(x(α))− φ(e) ≤ −1− log
1

2
= −1 + log 2 =: −δ < −0.3.

Thus, the lemma holds.

Proof of Theorem 5.4. One has

φ(xk) = n log(cTxk)−
n∑

i=1

log(xki)

φ(x0)− kδ = n log(cTx0)−
n∑

i=1

log(x0i)− kδ,

where x0i = 1
n due to the initial choice x0 = e. With Lemma 5.3, it holds that φ(xk) ≤ φ(x0)− kδ,

so:

n log

(
cTxk

cTx0

)
≤

n∑
i=1

log(xki)︸ ︷︷ ︸
<0 because x∈

◦
∆

−
n∑

i=1

log
1

n︸ ︷︷ ︸
=−n logn

−kδ ≤ n log n− kδ.

Thus, it holds that:
cTxk

cTx0
≤ elogn− k

n δ,

and the claim is shown if
elogn− k

n δ ≤ 2−q = eq log 2.

Since δ > 0.3 and log 2 ≈ 0.69, the condition

k ≥ n

δ
(q log 2 + log n)

is sufficient to ensure cT xk

cT x0 ≤ 2−q.

Remark 5.18 – Practical choice of α

In practice, we do not choose our parameter α as given in the theorem, but there we minimize
φ(x(α)) under the constraints α > 0 and e − αrd > 0. It is sufficient to approximate the
minimum. Typically, α is significantly closer to 1 than the α given in the theorem.

Remark 5.19 – Termination criterion

1. If φ(xk) ≤ φ(x0)−ϵ for a given tolerance ϵ, then we terminate the algorithm and search for
the nearest corner. With a simplex step, we check this corner for optimality. Otherwise,
we may continue with the simplex algorithm, which then (for good q) does not need much
more.

2. If φ(xk+1) > φ(xk)− δ, then there is no solution (it can even be shown that if no solution
exists, there can be such a k).

106 CHAPTER 5. LINEAR OPTIMIZATION

Bibliography

[1] Dantzig, Thapa, 2003, Linear Programming: 2

[2] Matoušek, Gärtner, 2007, Understanding and Using Linear Programming

107

	Fast Fourier Transform
	Fourier Series
	Discrete Fourier Transform
	Fast Fourier Transform (FFT)
	Approximation of Fourier coefficients, trigonometric interpolation
	Inverse Convolution Problem, Regularization, Filtering
	Numerical Deconvolution, Smoothing of Measured Data

	Eigenvalue Problems
	Fundamentals
	Conditioning of the Eigenvalue Problem
	Power Method
	Simultaneous Iteration and QR Algorithm
	Transformation to Hessenberg Form
	QR Algorithm with Shift
	Computation of Complex Eigenvalues
	Computation of Singular Values

	Conjugate Gradient Methods
	One-Dimensional Minimization
	Steepest Descent Method
	Ritz-Galerkin Method
	The Conjugate Gradient Method
	Error Analysis of the CG Method
	Preconditioned CG Method
	Conjugate Gradient Method for Minimizing Non-Quadratic Functions

	Iterative Methods for Large Linear Systems
	Arnoldi Method
	FOM and GMRES: Galerkin and Minimization of the Residuum
	Lanczos Algorithm
	BiCG and QMR

	Linear Optimization
	Examples (from Economics)
	Linear Programs (Optimization problems)
	Simplex Method
	Duality
	Karmarkar's algorithm
	Convergence of Karmarkar's algorithm

